Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (S): x + 2y – 2z + 2018 = 0
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (S): x + 2y – 2z + 2018 = 0 và (Q): x + my + (m -1)z + 2017 = 0. Khi hai mặt phẳng (P) và (Q) tạo với nhau một góc nhỏ nhất thì điểm H nào dưới đây nằm trong mặt phẳng (Q)?
A. H (-2017; 1; 1)
B. H (2017; -1; 1)
C. H (2017; 0; 0)
D. H (0; -2017; 0)
Trả lời:
Chọn A
Vectơ pháp tuyến của (P) và (Q) lần lượt là
Gọi φ là góc tạo bởi hai mặt phẳng (P) và (Q) thì 00 ≤ φ ≤ 900
Để (P) và (Q) tạo với nhau một góc nhỏ nhất thì cosφ lớn nhất nhỏ nhất.
Mà nên giá trị lớn nhất của là
Vậy H (-2017; 1; 1) ∈ (Q)
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu (S) có tâm nằm trên đường thẳng và tiếp xúc với hai mặt phẳng (P): 2x - z - 4 = 0, (Q): x – 2y – 2 = 0
Xem lời giải »
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau
Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng trên là:
Xem lời giải »
Câu 3:
Trong không gian với tọa độ Oxyz, cho hai điểm A (1;1;2), B (-1; 3; -9). Tìm tọa độ điểm M thuộc Oy sao cho vuông tại M.
Xem lời giải »
Câu 4:
Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính bóng bàn. Gọi S1 là tổng diện tích của ba quả bóng bàn, S2 là diện tích xung quanh của hình trụ. Tỉ số S1/S2 bằng:
Xem lời giải »
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng và hai điểm A(1; 2; -1); B (3; -1; -5). Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ sao cho khoảng cách từ điểm B đến đường thẳng d là lớn nhất. Phương trình đường thẳng d là:
Xem lời giải »