Viết phương trình mặt cầu có tâm I và bán kính R cực hay - Toán lớp 12
Viết phương trình mặt cầu có tâm I và bán kính R cực hay
Với Viết phương trình mặt cầu có tâm I và bán kính R cực hay Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Viết phương trình mặt cầu có tâm I và bán kính R từ đó đạt điểm cao trong bài thi môn Toán lớp 12.
Dạng bài: Viết phương trình mặt cầu biết tâm I (a; b; c) và bán kính R
Phương pháp giải
Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:
(S): (x-a)2+(y-b)2+(z-c)2=R2
Ví dụ minh họa
Bài 1: Viết phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5.
Hướng dẫn:
Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:
(S): (x-a)2+(y-b)2+(z-c)2=R2
Khi đó, phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5 là:
(S): (x-2)2+(y-3)2+(z+1)2=25.
Bài 2: Viết phương trình mặt cầu có đường kính AB với A (4; -3; 7), B(2; 1; 3)
Hướng dẫn:
Gọi I là trung điểm của AB
Do AB là đường kính của mặt cầu I là tâm mặt của mặt cầu.
⇒ I(3; -1;5)
Bán kính mặt cầu là:
R=IA= 3
Vậy phương trình mặt cầu có đường kính AB là:
(x-3)2+(y+1)2+(z-5)2=9
Chú ý: Để lập phương trình mặt cầu nhận AB là đường kính thì ta tìm tâm I là trung điểm của AB và bán kính R=AB/2
Bài 3: Viết phương trình mặt cầu có tâm I (3; -2; 2) và đi qua A(-2; 0; -1)
Hướng dẫn:
Vì mặt cầu (S) đi qua A nên (S) có bán kính
R=IA=√38
Vậy phương trình mặt cầu có tâm I (3; -2; 2) và bàn kính R=√38 là:
(x-3)2+(y+2)2+(z-2)2=38
Chú ý: Để lập phương trình mặt cầu khi biết tâm I (a; b; c) và đi qua một điểm A cho trước thì ta tìm bán kính R = IA. Khi đó, phương trình mặt cầu (S) có dạng:
(S): (x-a)2+(y-b)2+(z-c)2=R2
Bài 4: Cho đường thẳng và điểm A (5; 4; -2). Viết phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy)
Hướng dẫn:
Mặt phẳng (Oxy): z = 0
Gọi I là giao điểm của d và mặt phẳng Oxy
Do I∈d nên I (t; 1 + 2t; -1-t)
I thuộc mặt phẳng (Oxy) nên -1-t=0 ⇔ t=-1
⇒ I(-1; -1;0)
IA= √65
Phương trình mặt cầu đi qua A và có tâm I (-1; -1; 0) là
(x+1)2+(y+1)2+ z2=65