Cho A = 2 + 22 + 23 + … + 248. Chứng minh rằng A chia hết cho 2, 3, 7.
Câu hỏi:
Cho A = 2 + 22 + 23 + … + 248. Chứng minh rằng A chia hết cho 2, 3, 7.
Trả lời:
* Xét A = 2 + 22 + 23 + … + 248
Ta thấy: 2 ⋮ 2; 22 ⋮ 2, … , 248 ⋮ 2
Nên: 2 + 22 + 23 + … + 248 ⋮ 2 hay A chia hết cho 2.
* Xét A = 2 + 22 + 23 + … + 248
A = (2 + 22) + (23 + 24) + … + (247 + 248)
A = 2(1 + 2) + 23(1 + 2) + … + 247(1 + 2)
A = 2.3+ 23.3 + … + 247.3
A = 3(2 + 23 + … + 247)
Vì 3 ⋮ 3 nên 3(2 + 23 + … + 247) ⋮ 3
Vậy A chia hết cho 3.
* Xét A = 2 + 22 + 23 + … + 248
A = (2 + 22 + 23) + (24 + 25 + 26) + … + (246 + 247 + 248)
A = 2(1 + 2 + 22) + 24(1 + 2 + 22) + … + 246(1 + 2 + 22)
A = (1 + 2 + 22)(2 + 24 + … + 246)
A = 7.(2 + 24 + … + 246)
Vì 7 ⋮ 7 nên 7.(2 + 24 + … + 246)⋮ 7
Vậy A chia hết cho 7.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:
a)
b) Tứ giác OKME là hình chữ nhật.
c) P, O, N thẳng hàng và KE // PN.
Xem lời giải »
Câu 2:
Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức
Xem lời giải »
Câu 3:
Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).
Xem lời giải »
Câu 4:
Cho tam giác ABC. Hai điểm M và N di chuyển sao cho . Chứng minh MN luôn đi qua một điểm cố định.
Xem lời giải »
Câu 5:
Cho A = 33.22.19. Hỏi các số 27; 4; 16; 19; 24 có là ước của A không?
Xem lời giải »
Câu 7:
Tính biết a là nghiệm dương của phương trình x2 + x – 1 = 0.
Xem lời giải »
Câu 8:
Cho hình bình hành ABCD. Vẽ AE ⊥ BC tại E, DF ⊥ AB tại F. Biết AE = DF. Chứng minh rằng tứ giác ABCD là hình thoi.
Xem lời giải »