X

Các dạng bài tập Toán lớp 12

Cho hình bình hành ABCD. Vẽ AE ⊥ BC tại E, DF ⊥ AB tại F. Biết AE = DF. Chứng minh rằng tứ giác ABCD là hình thoi.


Câu hỏi:

Cho hình bình hành ABCD. Vẽ AE BC tại E, DF AB tại F. Biết AE = DF. Chứng minh rằng tứ giác ABCD là hình thoi.

Trả lời:

Cho hình bình hành ABCD. Vẽ AE ⊥ BC tại E, DF ⊥ AB tại F. Biết AE = DF. Chứng minh rằng tứ giác ABCD là hình thoi. (ảnh 1)

Ta có: FAD^=ABE^ (vì AD // BC)

Xét tam giác AFD và tam giác BEA có: 

FAD^=ABE^AFD^=AEB^=90°

DF = AE (giả thiết)

Suy ra: ∆AFD = ∆BEA (g.c.g)

AD = AB (2 cạnh tương ứng)

Xét hình bình hành ABCD có AD = AB nên ABCD là hình thoi.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:

a) AP=BN

b) Tứ giác OKME là hình chữ nhật.

c) P, O, N thẳng hàng và KE // PN.

Xem lời giải »


Câu 2:

Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức S=1R3+1R4+...+1R2022+1R2023

Xem lời giải »


Câu 3:

Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).

Xem lời giải »


Câu 4:

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho MN=2MAMB+MC. Chứng minh MN luôn đi qua một điểm cố định.

Xem lời giải »


Câu 5:

Cho a + b + c = 0 và a2 + b2 + c2 = 1. Tính a4 + b4 + c4.

Xem lời giải »


Câu 6:

Tìm GTLN của a2 + b2 + c2 biết a, b, c thỏa mãn 1 ≤ a, b, c ≤ 2 và a + b + c = 6.

Xem lời giải »


Câu 7:

Cho a,b là các số thực dương thoả mãn điều kiện a+1b+1=4. Tìm min của P=a2b+b2a

Xem lời giải »


Câu 8:

Cho a và b là hai số tự nhiên. Biết a chia cho 5 dư 1; b chia cho 5 dư 4. Chứng minh ab + 1 chia hết cho 5.

Xem lời giải »