Cho a + b + c = 0 và a2 + b2 + c2 = 1. Tính a4 + b4 + c4.
Câu hỏi:
Cho a + b + c = 0 và a2 + b2 + c2 = 1. Tính a4 + b4 + c4.
Trả lời:
Ta có a + b + c = 0.
⇔ (a + b + c)2 = 0.
⇔ a2 + b2 + c2 + 2(ab + bc + ca) = 0.
⇔ 2 + 2(ab + bc + ca) = 0.
⇔ 2(ab + bc + ca) = –2.
⇔ ab + bc + ca = –1.
Ta có ab + bc + ca = –1.
Suy ra (ab + bc + ca)2 = 1.
⇔ a2b2 + b2c2 + c2a2 + 2(ab2c + bc2a + a2bc) = 1.
⇔ a2b2 + b2c2 + c2a2 + 2abc(b + c + a) = 1.
⇔ a2b2 + b2c2 + c2a2 + 2abc.0 = 1.
⇔ a2b2 + b2c2 + c2a2 = 1.
Đặt P = a4 + b4 + c4
= (a2 + b2 + c2)2 – 2(a2b2 + b2c2 + c2a2)
= 22 – 2.1 = 2.
Vậy a4 + b4 + c4 = 2.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:
a)
b) Tứ giác OKME là hình chữ nhật.
c) P, O, N thẳng hàng và KE // PN.
Xem lời giải »
Câu 2:
Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức
Xem lời giải »
Câu 3:
Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).
Xem lời giải »
Câu 4:
Cho tam giác ABC. Hai điểm M và N di chuyển sao cho . Chứng minh MN luôn đi qua một điểm cố định.
Xem lời giải »
Câu 5:
Tìm GTLN của a2 + b2 + c2 biết a, b, c thỏa mãn 1 ≤ a, b, c ≤ 2 và a + b + c = 6.
Xem lời giải »
Câu 6:
Cho a,b là các số thực dương thoả mãn điều kiện . Tìm min của
Xem lời giải »
Câu 7:
Cho a và b là hai số tự nhiên. Biết a chia cho 5 dư 1; b chia cho 5 dư 4. Chứng minh ab + 1 chia hết cho 5.
Xem lời giải »
Câu 8:
Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A(1;3); B(-2;2); C(-1;-3). Tính chu vi và diện tích tam giác ABC.
Xem lời giải »