Cho a, b, c là các số thực dương thỏa mãn a + b + c + ab + bc + ac = 6. Chứng minh rằng: a^3 b + b^3 c + c^3 a lớn hơn bằng 3
Câu hỏi:
Cho a, b, c là các số thực dương thỏa mãn a + b + c + ab + bc + ac = 6. Chứng minh rằng:
Trả lời:
Đặt P =
Có a, b, c là các số thực dương, theo bất đẳng thức AM - GM có:
Suy ra: P =
Mà a + b + c + ab + bc + ac = 6
⇒ P ≥ 2(a2 + b2 + c2) + a + b + c – 6
Có (a – b)2 + (b – c)2 + (c – a)2 ≥ 0
⇒ 2(a2 + b2 + c2) ≥ 2(ab + bc + ca)
Suy ra: P ≥
Có ab + bc + ca ≤ a2 + b2 + c2
⇒ 3(ab + bc + ca) ≤ (a + b + c)2
Do đó: 6 = a + b + c + ab + bc + ac ≤ a + b + c +
⇒ + (a + b + c) – 6 ≥ 0
⇒ a + b + c ≥ 3(a + b + c)2 ≥ 9
Suy ra: P ≥
Dấu “=” xảy ra khi a = b = c.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Chứng minh rằng A = 1.5 + 2.6 + 3.7 + … + 2023.2027 chia hết cho 11, 23 và 2023.
Xem lời giải »
Câu 4:
Cho hình bình hành ABCD. Gọi E và F theo thứ tự là trung điểm của AB và CD
a) Chứng minh rằng AF // CE.
b) Gọi M, N theo thứ tự là giao điểm của BD và AF, CE. Chứng minh rằng DM = MN = NB.
Xem lời giải »
Câu 5:
Một can nếu đựng đầy dầu cân nặng 72 kg, nếu đựng nửa số dầu đó thì cân nặng 38kg. Hỏi cái can rỗng thì nặng bao nhiêu ki-lô-gam?
Xem lời giải »
Câu 6:
Bác Bình gửi tiết kiệm 500 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức lãi suất kép. Nếu sau đúng một năm bác Bình mới đến ngân hàng rút tiền thì số tiền lãi là bao nhiêu?
Xem lời giải »
Câu 7:
Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tiếp tuyến Ax, By với nửa đường tròn cùng phía đối với AB. Từ điểm M trên đường tròn (M khác A; B) vẽ tiếp tuyến với nửa đường tròn, cắt Ax và By lần lượt tại C và D.
a) Chứng minh .
b) Chứng minh AC.BD không đổi.
Xem lời giải »
Câu 8:
Cho tam giác ABC( AB < AC ) có hai đường phân giác CM, BN cắt nhau ở D. Qua A kẻ AE và AF vuông góc với BN và CM. Các đường thẳng AE và AF cắt BC ở I; K.
a) Chứng minh AFDE nội tiếp.
b) Chứng minh AB.NC = AN.BC.
Xem lời giải »