X

Các dạng bài tập Toán lớp 12

Cho ∆ ABC nhọn, đường cao AH. Kẻ HE ⊥ AB (E ∈ AB), HF ⊥ AC (F ∈ AC). a) Chứng minh: ∆AEH ∽ ∆AHB. Từ đó suy ra AH2 = AE.AB.


Câu hỏi:

Cho ∆ ABC nhọn, đường cao AH. Kẻ HE AB (E AB), HF AC (F AC).

a) Chứng minh: ∆AEH ∆AHB. Từ đó suy ra AH2 = AE.AB.

b) Chứng minh AE. AB = AF.AC.

c) Cho chu vi các ∆AEF và ∆ACB lần lượt là 20 cm và 30 cm. Tính diện tích ∆AEF và ∆ACB biết diện tích ∆ACB lớn hơn diện tích ∆AEF là 25 cm2.

Trả lời:

Cho ∆ ABC nhọn, đường cao AH. Kẻ HE ⊥ AB (E ∈ AB), HF ⊥ AC (F ∈ AC). a) Chứng minh: ∆AEH ∽ ∆AHB. Từ đó suy ra AH2 = AE.AB. (ảnh 1)

a) Vì AH là đường cao (giả thiết)

AH  BC

∆AHB vuông tại H

Lại có HE  AB (giả thiết)

∆AEH vuông tại E

Do đó AEH^=AHB^=90°

Xét ∆AEH và ∆AHB có:

AEH^=AHB^=90° (chứng minh trên)

BAH^ chung

Do đó ∆AEH  ∆ AHB (g.g)

AHAB=AEAH (tỉ số đồng dạng)

Suy ra: AH2 = AE.AB. (1)

b) Vì AH  BC (chứng minh câu a) nên AHC^=90°

Vì HF  AC (giả thiết) nên AFH^=90°

Xét ∆AFH và ∆AHC có

AFH^=AHC^=90°

HAF^ chung

Do đó ∆AFH  ∆AHC (g.g)

AFAH=AHAC (tỉ số đồng dạng)

Suy ra: AH2 = AF.AC. (2)

Từ (1) và (2) suy ra: AE. AB = AF.AC

c) Theo b có: AE. AB = AF.AC nên: AEAC=AFAB

Xét ∆AEF và ∆ACB có 

AEAC=AFAB

A^ chung

Do đó ∆AEF  ∆ACB (c.g.c)

⇒ AEAC=AFAB=EFBC

Theo tính chất dãy tỉ số bằng nhau ta có: AEAC=AFAB=EFBC=AE+AF+EFAC+AB+BC=2030=23

(vì chu vi ∆AEF và ∆ACB lần lượt là 20 cm và 30 cm)

SAEFSABC=AEAC2=49SAEF4=SABC9=SABCSAEF94=255=5 (Do SABC – SAEF = 25 cm2)

Vậy SAEF = 5.4 = 20 (cm2)

SABC = 20 + 25 = 45 (cm2).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:

a) AP=BN

b) Tứ giác OKME là hình chữ nhật.

c) P, O, N thẳng hàng và KE // PN.

Xem lời giải »


Câu 2:

Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức S=1R3+1R4+...+1R2022+1R2023

Xem lời giải »


Câu 3:

Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).

Xem lời giải »


Câu 4:

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho MN=2MAMB+MC. Chứng minh MN luôn đi qua một điểm cố định.

Xem lời giải »


Câu 5:

Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt vuông góc với AB, AC

a) Chứng minh ABAC2=HBHC

b) Chứng minh EBFC=ABAC3

Xem lời giải »


Câu 6:

Một cung lượng giác trên đường tròn định hướng có độ dài bằng một nửa bán kính. Số đo theo rađian của cung đó là?

Xem lời giải »


Câu 7:

Một sân trường hình chữ nhật có nửa chu vi là 120 m. Chiều rộng bằng 35 chiều dài. Hỏi diện tích của sân trường đó bằng bao nhiêu mét vuông, bao nhiêu ha?

Xem lời giải »


Câu 8:

Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng: AB+CD+EF=AD+EB+CF

Xem lời giải »