X

Các dạng bài tập Toán lớp 12

Cho đường tròn (O) đường kính AB. Đường thẳng d tiếp xúc với


Câu hỏi:

Cho đường tròn (O) đường kính AB. Đường thẳng d tiếp xúc với (O) tại A. Gọi I là một điểm cố định trên đoạn thẳng AB. Gọi DE là dây cung thay đổi của (O) luôn đi qua I. Gọi BD, BE cắt d lần lượt tại M, N.

1) Chứng minh rằng tứ giác DENM là tứ giác nội tiếp.

2) Chứng minh rằng tích AM. AN không đổi.

3) Chứng minh rằng tâm đường tròn ngoại tiếp tứ giác DENM thuộc một đường thẳng cố định.

Trả lời:

Cho đường tròn (O) đường kính AB. Đường thẳng d tiếp xúc với (ảnh 1)

1) Ta có: AB là đường kính của (O) nên AD BM, AE EB

Mà AB MN

Nên BD.BM = BA2 = BE. BN

\(\frac{{BD}}{{BN}} = \frac{{BE}}{{BM}}\)

\(\widehat {DBE} = \widehat {MBN}\)

∆BDE ∆BNM (c.g.c.)

\(\widehat {BDE} = \widehat {BNM}\)

MNED nội tiếp

2) Vẽ đường tròn ngoại tiếp ΔBMN, (BMN) ∩ AB = P

ΔBEI ΔBPN(g.g)

\(\frac{{BE}}{{BP}} = \frac{{BI}}{{BN}}\)

BI.BP = BE.BN = BA2

BP = \(\frac{{B{A^2}}}{{BI}}\) P cố định

\(\widehat {PAN} = \widehat {MAB},\widehat {APN} = \widehat {BPN} = \widehat {BMN} = \widehat {BMA}\)

ΔABM ΔANP(g.g)

\(\frac{{AM}}{{AP}} = \frac{{AB}}{{AN}}\)

AM.AN = AB. AP không đổi

3.Vẽ đường tròn ngoại tiếp DMNE, (DMNE) ∩ AB = C, F (như hình vẽ)

Chứng minh tương tự câu 2 có AF.AC = AM.AN AF.AC = AP.AB

Lại có BCF, BDM là cát tuyến tại B với (DMNE)

BC.BF = BD.BM = BA2

\(\left\{ \begin{array}{l}BC.BF = B{A^2}\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}\left( {AB - AC} \right)\left( {AB + AF} \right) = B{A^2}\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}A{B^2} + AB\left( {AF - AC} \right) - AF.AC = B{A^2}\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AB\left( {AF - AC} \right) = AF.AC\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AB\left( {AF - AC} \right) = AP.AB\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AF - AC = AP\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AF = AC + AP\\AF.AC = AP.AB\end{array} \right.\)

\(\left\{ \begin{array}{l}AF = AC + AP\\A{C^2} + AC.AP - AP.AB = 0\end{array} \right.\) C cố định

C, F cố định

Tâm (DENM) thuộc trung trực của CF cố định.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.

a) Chứng minh AH vuông góc với BC.

b) Gọi E là trung điểm AH. Chứng minh bốn điểm A, M, H, E cùng nằm trên một đường tròn và EM là tiếp tuyến của đường tròn (O).

Xem lời giải »


Câu 2:

Tính giá trị biểu thức: \(\frac{{2\sqrt {15} - 2\sqrt {10} + \sqrt 6 - 3}}{{2\sqrt 5 - 2\sqrt {10} - \sqrt 3 + \sqrt 6 }}\).

Xem lời giải »


Câu 3:

Cho nửa đường tròn (O). Đường kính AB = 6 cm. Kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CE với nửa đường tròn (E là tiếp điểm), CE cắt By tại D.

a) Chứng minh \[\widehat {COD} = 90^\circ \].

b) Chứng minh AEB và COD đồng dạng.

c) Gọi I là trung điểm của CD. Vẽ đường tròn (I) bán kính IC. Chứng minh rằng AB là tiếp tuyến của (I).

Xem lời giải »


Câu 4:

Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC.

a) Tứ giác ADME là hình gì, tại sao?

b) Chứng minh DE = \(\frac{1}{2}BC\).

c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

Xem lời giải »


Câu 5:

Cho hình thang ABCD (AD // BC) có \(\widehat A - \widehat B = 20^\circ ,\widehat D = 2\widehat C\).

1) Tính \(\widehat A + \widehat B\).

2) Chứng minh \(\widehat A + \widehat B = \widehat D + \widehat C\).

3) Tính số đo các góc của hình thang.

Xem lời giải »


Câu 6:

Tìm số nguyên tố p sao cho 2p + 1 chia hết cho p.

Xem lời giải »


Câu 7:

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho MH = MK.

a, Chứng minh: BHCK là hình bình hành.

b, Chứng minh: BK vuông góc AB.

c, Chứng minh: tâm giác MEF cân.

d, CQ vuông góc BK tại Q. Chứng minh: EF vuông góc EQ.

Xem lời giải »


Câu 8:

Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ 3 với đường tròn, nó cắt Ax , By tại C, D. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C và D.

a) Chứng minh rằng: tam giác COB là tam giác vuông.

b) Chứng minh MC.MD = OM2.

Xem lời giải »