X

Các dạng bài tập Toán lớp 12

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt


Câu hỏi:

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho MH = MK.

a, Chứng minh: BHCK là hình bình hành.

b, Chứng minh: BK vuông góc AB.

c, Chứng minh: tâm giác MEF cân.

d, CQ vuông góc BK tại Q. Chứng minh: EF vuông góc EQ.

Trả lời:

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt  (ảnh 1)

a) Xét tứ giác BHCK có:

M là trung điểm của BC (giả thiết).

M là trung điểm của HK (MH = MK).

BHCK là hình bình hành (dấu hiệu nhận biết).

b) BHCK là hình bình hành (chứng minh trên).

BK // HC mà HC AB (đường cao)

AB BK (từ vuông góc đến song song đảo).

c) M là trung điểm của BC (giả thiết)

ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E
ME = \(\frac{1}{2}BC\)
M là trung điểm của BC (giả thiết).

MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F
MF = \(\frac{1}{2}BC\) = ME
ΔMEF cân (hai cạnh bên bằng nhau).

d) Xét tứ giác BFCQ có:

\(\widehat {BFC} = 90^\circ \)(CF AB)

\(\widehat {FBQ} = 90^\circ \)(BK AB)

\(\widehat {BQC} = 90^\circ \)(CQ BK)

BFCQ là hình chữ nhật

BC = FQ

M là trung điểm FQ

ME là trung tuyến của tam giác EFQ

Suy ra: ME = \(\frac{1}{2}BC\)= \(\frac{1}{2}PQ\)

Tam giác EFQ vuông tại E

Vậy EF vuông góc EQ.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.

a) Chứng minh AH vuông góc với BC.

b) Gọi E là trung điểm AH. Chứng minh bốn điểm A, M, H, E cùng nằm trên một đường tròn và EM là tiếp tuyến của đường tròn (O).

Xem lời giải »


Câu 2:

Tính giá trị biểu thức: \(\frac{{2\sqrt {15} - 2\sqrt {10} + \sqrt 6 - 3}}{{2\sqrt 5 - 2\sqrt {10} - \sqrt 3 + \sqrt 6 }}\).

Xem lời giải »


Câu 3:

Cho nửa đường tròn (O). Đường kính AB = 6 cm. Kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CE với nửa đường tròn (E là tiếp điểm), CE cắt By tại D.

a) Chứng minh \[\widehat {COD} = 90^\circ \].

b) Chứng minh AEB và COD đồng dạng.

c) Gọi I là trung điểm của CD. Vẽ đường tròn (I) bán kính IC. Chứng minh rằng AB là tiếp tuyến của (I).

Xem lời giải »


Câu 4:

Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC.

a) Tứ giác ADME là hình gì, tại sao?

b) Chứng minh DE = \(\frac{1}{2}BC\).

c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

Xem lời giải »


Câu 5:

Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ 3 với đường tròn, nó cắt Ax , By tại C, D. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C và D.

a) Chứng minh rằng: tam giác COB là tam giác vuông.

b) Chứng minh MC.MD = OM2.

Xem lời giải »


Câu 6:

Cho phương trình x (m  3)x 5 = 0, m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 là các số nguyên.

Xem lời giải »


Câu 7:

Tìm các số tự nhiên x sao cho 14 chia hết cho 2x + 1.

Xem lời giải »


Câu 8:

Cho A = 2 + 22 + 23 + … + 260. Hãy thu gọn tổng A.

Xem lời giải »