X

Các dạng bài tập Toán lớp 12

Cho hai đường tròn (O; R) và (O'; R') (R > R') tiếp xúc ngoài nhau tại A. Qua A kẻ hai cát tuyến BD và CE (B, C ∈ (O')); D, E ∈ (O)). Chứng minh


Câu hỏi:

Cho hai đường tròn (O; R) và (O'; R') (R > R') tiếp xúc ngoài nhau tại A. Qua A kẻ hai cát tuyến BD và CE (B, C (O')); D, E (O)). Chứng minh: ABC^=ADE^

Trả lời:

Cho hai đường tròn (O; R) và (O'; R') (R > R') tiếp xúc ngoài nhau tại A. Qua A kẻ hai cát tuyến BD và CE (B, C ∈ (O')); D, E ∈ (O)). Chứng minh (ảnh 1)

Xét tam giác O'AC có O'A = O'C = R' nên tam giác O'AC cân tại O'

Suy ra: CO'A^=180°2O'AC^

Tương tự: tam giác OAE cân tại O nên: EOA^=180°2OAE^

O'AC^,OAE^ là 2 góc đối đỉnh nên O'AC^=OAE^

Suy ra: CO'A^=EOA^

Xét tam giác O'CA và OAE có:

OA'OA=OC'OC=R'RCO'A^=EOA^

∆O'AC ∆OAE (c.g.c)

Suy ra: AOE^=AO'C^

Mà: AOE^=2ADE^ (vì AOE^ là góc ở tâm, chắn cung AE, ADE^=12AE)

AO'C^=2ABC^ (vì AO'C^ là góc ở tâm, chắn cung AC, ABC^=12AC)

Suy ra: ABC^=ADE^.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A = (m; m + 3) và B (2; 6m + 1). Tìm m để A ∩ B = ∅.

Xem lời giải »


Câu 2:

Cho hai tập hợp khác rỗng A = [m – 1; 5) và B = [-3; 2m + 1]. Tìm m để A B.

Xem lời giải »


Câu 3:

Cho tam giác ABC cân tại A, đường cao AD, K là trung điểm của AD. Gọi I là hình chiếu của điểm D trên CK. Chứng minh rằng AIB^=90°.

Xem lời giải »


Câu 4:

Cho tam giác ABC có 3 góc nhọn. Chứng minh sinA + cosA + sinC + cosC > 2.

Xem lời giải »


Câu 5:

Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ các đường kính AOB, AO'C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC.

a) Chứng minh rằng tứ giác DBCE là hình thoi.

b) Gọi I là giao điểm của EC và đường tròn (O'). Chứng minh rằng ba điểm D, A, I thẳng hàng.

c) Chứng minh rằng KI là tiếp tuyến của đường tròn (O').

Xem lời giải »


Câu 6:

Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M và N lần lượt cắt AD và AF tại M’ và N’. Chứng minh

a) (ADF) // (BCE).

b) M′N′ // DF.

c) (DEF) // (MM′N′N) và MN // (DEF).

Xem lời giải »


Câu 7:

Cho hai số thực a , b thỏa điều kiện ab = 1, a + b ≠ 0. Tính giá trị của biểu thức: P=1a+b31a3+1b3+3a+b41a2+1b2+6a+b5

Xem lời giải »


Câu 8:

Cho hai tập hợp E = (2;5] và F = [2m - 3; 2m + 2]. Tìm tất cả các giá trị của tham số m để E hợp F là một đoạn có độ dài bằng 5.

Xem lời giải »