X

Các dạng bài tập Toán lớp 12

Cho mặt cầu (S): x^2 + y^2 + z^2 + 2x - 2y + 6 - 5 = 0 và (P): x - 2y + 2z + 3 = 0 mặt phẳng . Gọi M là tiếp điểm của (S) và tiếp diện di động (Q) vuông góc với (P). tập hợp các điểm M là:


Câu hỏi:

Cho mặt cầu S:  x2+y2+z2+2x2y+6z5=0 và mặt phẳng P:x2y+2z+3=0. Gọi M là tiếp điểm của (S) và tiếp diện di động (Q) vuông góc với (P). tập hợp các điểm M là:
A. Mặt phẳng: x2y+2z+9=0
B. Mặt phẳng: x2y+2z9=0
C. Đường tròn: x2+y2+z2+2x2y+6z5=0;   x2y+2z9=0
D. Đường tròn: x2+y2+z2+2x2y+6z5=0;   x2y+2z+9=0

Trả lời:

Chọn D

(S) có tâm I(-1,1,-3),  bán kính R = 4. IM vuông góc với (Q), nên IM // (P) =>  M nằm trong mặt phẳng (R) qua I và song song với (P).

Phương trình R:x2y+2z+D=0.IRD=9

R:x2y+2z+9=0

MSTập hợp các điểm M là đường tròn giao tuyến của (S) và (R): 

x2+y2+z2+2x2y+6z5=0x2y+2z+9=0

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (C)  đường kính AB  và đường thẳng Δ. Để hình tròn xoay sinh bởi (C)  khi quay quanh Δ là một mặt cầu thì cần có thêm điều kiện nào sau đây:

(I) Đường kính AB thuộc Δ.

(II) Δ cố định và đường kính AB thuộc Δ.

(III) Δ cố định và hai điểm A, B cố định trên Δ.

Xem lời giải »


Câu 2:

Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?
Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. (ảnh 1)

Xem lời giải »


Câu 3:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

Xem lời giải »


Câu 4:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC=R3. Khi đó khoảng cách từ O đến BC bằng:

Xem lời giải »


Câu 5:

Cho mặt cầu S:  x2+y2+z2+2x2y+6z5=0 và mặt phẳng P:x2y+2z+3=0. Viết phương trình mặt cầu (S’) có bán kính nhỏ nhất chứa giao tuyến  của (S) và (P).

Xem lời giải »


Câu 6:

Cho tứ diện ABCD có A(1,1,1); B(3,3,1); C(3,1,3); D(1,3,3). Viết phương trình mặt cầu ( S1 ) tiếp xúc với 6 cạnh của tứ diện

Xem lời giải »


Câu 7:

Cho tứ diện ABCD có A(1,1,1); B(3,3,1; C(3,1,3); D(3,1,3). Viết phương trình mặt cầu ( S2 ) nội tiếp tứ diện.

Xem lời giải »


Câu 8:

Viết phương trình mặt cầu ( S3 ) ngoại tiếp tứ diện.

Xem lời giải »