X

Các dạng bài tập Toán lớp 12

Cho số phức z thỏa mãn |z – 1 – 2i| = 4


Câu hỏi:

Cho số phức z thỏa mãn |z – 1 – 2i| = 4. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của |z + 2 + i|. Tính S = m2 + M2?

A. 34

B. 82

C. 68

D. 36

Trả lời:

Chọn C.

Ta có |z – 1 – 2i| = 4.  Hay |z – (1 + 2i)| = 4.

Đặt  w = z + 2 + i

Gọi M( x; y)  là điểm biểu diễn của số phức w trên mặt phẳng Oxy.

Khi đó, tập hợp điểm biểu diễn của số phức w là đường tròn tâm  I, với   là điểm biểu diễn của số phức 1 + 2i + 2 + i = 3 + 3i.

Tức là tâm I(3; 3) , bán kính r = 4.

Do đó: 

Vậy S = m2 + M2 = 68.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hai số phức z1; z2 khác 0 thỏa mãn z13+z23=0.Gọi A; B  lần lượt là các điểm biểu diễn cho số phức z1; z2. Khi đó tam giác OAB là:

Xem lời giải »


Câu 2:

Cho số phức z thỏa mãn (2z-1) ( 1+ i) +(z¯ + 1)(1-i) =2-2i. Giá trị của |z| là ?

Xem lời giải »


Câu 3:

Cho số phức z = a + bi thỏa mãn  .Tính P = a + b

Xem lời giải »


Câu 4:

Số nghiệm của phương trình với ẩn số phức z: 4z2 + 8|z|2 - 3 = 0 là:

Xem lời giải »


Câu 5:

Cho số phức z thỏa mãn |(1+ i )z + 1 -7i | = 2 . Tìm giá trị lớn nhất của |z|?

Xem lời giải »


Câu 6:

Trong mặt phẳng phức Oxy, tập hợp biểu diễn số phức z thỏa mãn  là đường tròn C. Khoảng cách từ tâm I của đường tròn (C) đến trục tung bằng bao nhiêu?

Xem lời giải »


Câu 7:

Số phức z  thỏa mãn điều nào thì có điểm biểu diễn thuộc phần gạch chéo như trên hình.

Xem lời giải »


Câu 8:

Trong mặt phẳng phức Oxy, số phức z thỏa điều kiện nào thì có điểm biểu diễn số phức thuộc phần tô màu như hình vẽ

Xem lời giải »