Cho tam giác ABC có góc B = góc C = 40 độ. Kẻ phân giác
Câu hỏi:
Cho tam giác ABC có \(\widehat B = \widehat C = 40^\circ \). Kẻ phân giác BD.
Chứng minh BD + AD = BC.
Trả lời:
Kẻ MD // BC (M thuộc AB)
Lấy N thuộc BC sao cho BD = BN
Trong tam giác DBN có \(\widehat {DBN} = \frac{1}{2}\widehat B = 20^\circ \)(BD là phân giác)
Mà BD = BN nên tam giác BDN cân tại B; \[\widehat {BND} = \widehat {BDN}\]
Suy ra: \[\widehat {BND} = \frac{{180^\circ - 20^\circ }}{2} = 80^\circ \]
Mà \(\widehat {DNB}\)là góc ngoài của tam giác DNC
Nên: \(\widehat {DNB} = \widehat C + \widehat {CDN}\)
⇒ \(\widehat {CDN} = \widehat {DNB} - \widehat C = 80^\circ - 40^\circ = 40^\circ \)
Vì MD // BC nên \(\widehat {MDB} = \widehat {DBN} = 20^\circ \)
Thấy tam giác BMD cân tại M vì \(\widehat {MBD} = \widehat {MDB} = \widehat {DBN} = 20^\circ \)
Suy ra: BM = MD
Lại có: MD // BC
Suy ra: BM = DC
Mà AB = AC nên AM = AD
\(\widehat {ABD} = \widehat {DBC}\) = \(\frac{1}{2}\widehat B = 20^\circ \)
\[\widehat {ADB} = 180^\circ - 20^\circ - 100^\circ = 60^\circ \]
\[\widehat {BDC} = 180^\circ - 20^\circ - 40^\circ = 120^\circ \]
Vì BDN là tam giác cân tại B nên \(\widehat {BDN} = \widehat {BND} = \frac{{180^\circ - 20^\circ }}{2} = 80^\circ \)
Suy ra: \(\widehat {NDC} = \widehat {BDC} - \widehat {BDN} = 120^\circ - 80^\circ = 40^\circ \)
Mà \(\widehat {DCN} = 40^\circ \)
Nên tam giác DCN cân tại N.
⇒ DN = NC
Xét tam giác AMD và tam giác DNC có:
\(\widehat {ADM} = \widehat {DCN}\)(2 góc đồng vị)
\(\widehat {AMD} = \widehat {NDC} = 40^\circ \)
⇒ ∆AMD ∽ ∆ NDC (g.g)
⇒ \(\frac{{AM}}{{DN}} = \frac{{AD}}{{NC}} = \frac{{MD}}{{DC}}\)
Suy ra: AD = CN.
Vậy BD + AD = BD + NC = BN + NC = BC.