Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt
Câu hỏi:
Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt vuông góc với AB, AC.
a) Chứng minh \(\frac{{EB}}{{FC}} = {\left( {\frac{{AB}}{{AC}}} \right)^3}\).
b) Chứng minh BC.BE.CF = AH3.
Trả lời:
Áp dụng hệ thức lượng trong các tam giác vuông ABC, AHB, AHC ta có:
AB.AC = BC.AH ⇒ \(BC = \frac{{AB.AC}}{{AH}}\)
* BH2 = AB.BE
AB2 = BH.BC ⇒ AB4 = BH2 . BC2 = AB.BE.BC2
* CH2 = AC.CF
AC2 = CH.BC ⇒ AC4 = CH2 . BC2 = AC.CF.BC2
Xét: \(\frac{{A{B^4}}}{{A{C^4}}} = \frac{{AB.BE.B{C^2}}}{{AC.CF.B{C^2}}} = \frac{{AB.BE}}{{AC.CF}}\)
Suy ra: \(\frac{{EB}}{{FC}} = {\left( {\frac{{AB}}{{AC}}} \right)^3}\)
Lại có: BH2 = AB.BE ⇒ BE = \(\frac{{B{H^2}}}{{AB}}\)
CH2 = AC.CF ⇒ CF = \(\frac{{C{H^2}}}{{AC}}\)
Khi đó: \(BE.CF = \frac{{B{H^2}}}{{AB}}.\frac{{C{H^2}}}{{AC}} = \frac{{A{H^4}}}{{AB.AC}}\)(Vì AH2 = BH.CH)
Vậy BC.BE.CF = \(\frac{{AB.AC}}{{AH}}.\frac{{A{H^4}}}{{AB.AC}} = A{H^3}\).