Tìm m để phương trình x^2 - (3m - 1)x + 2m^2 - m = 0 có nghiệm
Câu hỏi:
Tìm m để phương trình x2 – (3m – 1)x + 2m2 – m = 0 có nghiệm phân biệt x1, x2 thỏa mãn x1 = x22.
Trả lời:
x2 – (3m – 1)x + 2m2 – m = 0 (*)
∆ = [–(3m – 1)]2 – 4(2m2 – m) = m2 – 2m + 1 = (m – 1)2
Để (*) có 2 nghiệm phân biệt thì ∆ > 0 hay (m – 1)2 > 0
⇒ m ≠ 1.
Suy ra phương trình luôn có 2 nghiệm là:
\[\left\{ \begin{array}{l}{x_1} = \frac{{3m - 1 - \left( {m - 1} \right)}}{2} = m\\{x_2} = \frac{{3m - 1 + \left( {m - 1} \right)}}{2} = 2m - 1\end{array} \right.\] hay \[\left\{ \begin{array}{l}{x_2} = m\\{x_1} = 2m - 1\end{array} \right.\]
Theo giả thiết ta có: x1 = x22
⇔ \(\left[ \begin{array}{l}m = {\left( {2m - 1} \right)^2}\\2m - 1 = {m^2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4{m^2} - 5m + 1 = 0\\{m^2} - 2m + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = \frac{1}{4}\end{array} \right.\)
Kết hợp với điều kiện m ≠ 1.
Vậy m = \(\frac{1}{4}\).