X

Các dạng bài tập Toán lớp 12

Cho tam giác DEF cân tại D. Trên DE lấy điểm M, trên DF lấy điểm N sao cho DM = DN. Chứng minh tứ giác MNFE là hình thang cân.


Câu hỏi:

Cho tam giác DEF cân tại D. Trên DE lấy điểm M, trên DF lấy điểm N sao cho DM = DN. Chứng minh tứ giác MNFE là hình thang cân.

Trả lời:

Cho tam giác DEF cân tại D. Trên DE lấy điểm M, trên DF lấy điểm N sao cho DM = DN. Chứng minh tứ giác MNFE là hình thang cân. (ảnh 1)

Ta có DEF cân tại D

DE = DF

Xét DNE và DMF ta có:

DE = DF (gt)

D^ góc chung

DM = DN (gt)

DNE = DMF (c.g.c)

EN = FM

Suy ra: MNFE là hình thang cân (dấu hiệu nhận biết hình thang cân).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho BH=13HC. Điểm M di động nằm trên BC sao cho BM=xBC. Tìm x sao cho độ dài của MA+GC đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 2:

Cho tam giác ABC có A^=70°, các đường phân giác BD, CE cắt nhau ở I. Tính BIC^

Cho tam giác ABC có góc A= 70 độ, các đường phân giác BD, CE cắt nhau ở I (ảnh 1)

Xem lời giải »


Câu 3:

Cho tam giác ABC có C^=90°. Kẻ đường cao CH. Biết HB - HA = AC. Tính A^,B^.

Xem lời giải »


Câu 4:

Cho tam giác ABC có góc C nhọn, AH và BK là hai đường cao, HK = 7, diện tích tứ giác ABHK bằng 7 lần diện tích tam giác CHK. Khi đó bán kính đường tròn ngoại tiếp tam giác ABC bằng?

Xem lời giải »


Câu 5:

Cho tam giác ABC đều cạnh a, điểm M là trung điểm BC.

Tính 34MA2,5MB.

Xem lời giải »


Câu 6:

Cho tam giác ABC đều cạnh a, tính CB.

Xem lời giải »


Câu 7:

Cho tam giác MNP vuông tại M, đường cao MH, có MN = 6cm, NP = 10cm. Tính MP, MH, NH.

Xem lời giải »


Câu 8:

Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.

Xem lời giải »