X

Các dạng bài tập Toán lớp 12

Lý thuyết Phương trình mũ và phương trình lôgarit - Toán lớp 12


Lý thuyết Phương trình mũ và phương trình lôgarit

Tài liệu Lý thuyết Phương trình mũ và phương trình lôgarit Toán lớp 12 sẽ tóm tắt kiến thức trọng tâm về Phương trình mũ và phương trình lôgarit từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 12.

Lý thuyết Phương trình mũ và phương trình lôgarit

A. Tóm tắt lý thuyết

1. PHƯƠNG TRÌNH MŨ.

1.1. Phương trình mũ cơ bản ax = b (a > 0, a ≠ 1).

    ● Phương trình có một nghiệm duy nhất khi b > 0 .

    ● Phương trình vô nghiệm khi b ≤ 0 .

1.2. Biến đổi, quy về cùng cơ số

    af(x) = ag(x) ⇔ a = 1 hoặc Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải .

1.3. Đặt ẩn phụ

    f[ag(x)] = 0 ( 0 < a ≠ 1) ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải.

    Ta thường gặp các dạng:

    ● m.a2f(x) + n.af(x) + p = 0

    ● m.af(x) + n.bf(x) + p = 0, trong đó a.b = 1. Đặt t = af(x). t > 0, suy ra bf(x) = 1/t.

    ● m.a2f(x) + n.(a.b)f(x) + p.b2f(x) = 0. Chia hai vế cho b2f(x) và đặt (a/b)f(x) = t > 0.

1.4. Logarit hóa

    ● Phương trình Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải .

    ● Phương trình af(x) = bg(x) ⇔ logaaf(x) = logabg(x) ⇔ f(x) = g(x).logab

    hoặc logbaf(x) = logbbg(x) ⇔ f(x).logba = g(x)

1.5. Giải bằng phương pháp đồ thị

    o Giải phương trình: ax = f(x) (0 < a ≠ 1) (*) .

    o Xem phương trình (*) là phương trình hoành độ giao điểm của hai đồ thị y = ax (0 < a ≠ 1) và y = f(x) . Khi đó ta thực hiện hai bước:

    - Bước 1. Vẽ đồ thị các hàm số y = ax (0 < a ≠ 1) và y = f(x) .

    - Bước 2. Kết luận nghiệm của phương trình đã cho là số giao điểm của hai đồ thị.

1.6. Sử dụng tính đơn điệu của hàm số

    o Tính chất 1. Nếu hàm số y = f(x) luôn đồng biến (hoặc luôn nghịch biến) trên (a; b) thì số nghiệm của phương trình f(x) = k trên (a; b) không nhiều hơn một và f(u) = f(v) ⇔ u = v, ∀u, v ∈ (a; b).

    o Tính chất 2. Nếu hàm số y = f(x) liên tục và luôn đồng biến (hoặc luôn nghịch biến) ; hàm số y = g(x) liên tục và luôn nghịch biến (hoặc luôn đồng biến) trên D thì số nghiệm trên D của phương trình f(x) = g(x) không nhiều hơn một.

    o Tính chất 3. Nếu hàm số y = f(x) luôn đồng biến (hoặc luôn nghịch biến) trên D thì bất phương trình f(u) > f(v) ⇔ u > v (hoặc u < v), ∀u,v ∈ D.

1.7. Sử dụng đánh giá

    o Giải phương trình f(x) = g(x).

    o Nếu ta đánh giá được Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải.

2. PHƯƠNG TRÌNH LÔGARIT

2.1. Biến đổi, quy về cùng cơ số

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

2.2. Đặt ẩn phụ

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

2.3. Mũ hóa hai vế

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

2.4. Phương pháp đồ thị

2.5. Sử dụng tính đơn điệu của hàm số

Xem thêm các dạng bài tập Toán lớp 12 chọn lọc, có lời giải hay khác: