X

Các dạng bài tập Toán lớp 12

Một con tàu khởi hành từ đảo A, đi thẳng về hướng đông 10 km rồi đi thẳng tiếp 10 km về hướng nam thì tới đảo B (H.4.2). Nếu từ đảo A, tàu đi thẳng


Câu hỏi:

Một con tàu khởi hành từ đảo A, đi thẳng về hướng đông 10 km rồi đi thẳng tiếp 10 km về hướng nam thì tới đảo B (H.4.2). Nếu từ đảo A, tàu đi thẳng (không đổi hướng) tới đảo B, thì phải đi theo hướng nào và quãng đường phải dài bao nhiêu kilômét?

Một con tàu khởi hành từ đảo A, đi thẳng về hướng đông 10 km rồi đi thẳng tiếp 10 km về hướng nam thì tới đảo B (H.4.2). Nếu từ đảo A, tàu đi thẳng  (ảnh 1)

Trả lời:

Ta có hình vẽ sau:

Một con tàu khởi hành từ đảo A, đi thẳng về hướng đông 10 km rồi đi thẳng tiếp 10 km về hướng nam thì tới đảo B (H.4.2). Nếu từ đảo A, tàu đi thẳng  (ảnh 2)

Vì góc giữa hướng đông và hướng nam là bằng 90 độ nên AHB^=90°

 do đó tam giác AHB vuông tại H.

Xét ΔAHB vuông tại H, áp dụng định lí Py – ta – go ta có: AB2 = AH2 + BH2

Thay số: AB2 = 102 + 10 = 100 + 100 = 200

⇔ AB=200=102km

ΔAHB vuông tại H, có AH = BH = 10 km nên ΔAHB cân tại H

Suy ra: HAB^=45°

Do đó nếu đi từ đảo A, tàu đi thẳng (không đổi hướng) tới đảo B thì phải đi theo đường thẳng AB chính là hướng đông nam, tạo với hướng đông một góc 45°.

Vậy nếu từ đảo A, tàu đi thẳng (không đổi hướng) tới đảo B, thì phải đi theo hướng đông nam, tạo với hướng đông một góc 45° và đi quãng đường dài 102km.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:

a) AP=BN

b) Tứ giác OKME là hình chữ nhật.

c) P, O, N thẳng hàng và KE // PN.

Xem lời giải »


Câu 2:

Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức S=1R3+1R4+...+1R2022+1R2023

Xem lời giải »


Câu 3:

Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).

Xem lời giải »


Câu 4:

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho MN=2MAMB+MC. Chứng minh MN luôn đi qua một điểm cố định.

Xem lời giải »


Câu 5:

Tìm số tự nhiên n có 3 chữ số khác nhau biết rằng nếu xóa bất kì chữ số nào của nó ta cũng được một số là ước của n.

Xem lời giải »


Câu 6:

Tập giá trị của hàm số y = 2sin2x – sinx – 1 là đoạn [m; M]. Khi đó 8m – 3M bằng?

Xem lời giải »


Câu 7:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m

 có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.

Xem lời giải »


Câu 8:

Trên mặt phẳng tọa độ Oxy cho đường thẳng d: y = (2m + 10)x - 4m - 1 và điểm A(-2;3). Tìm m để khoảng cách từ A đến đường thẳng lớn nhất.

Xem lời giải »