Trên mặt phẳng tọa độ Oxy cho đường thẳng d: y = (2m + 10)x - 4m - 1 và điểm A(-2;3). Tìm m để khoảng cách từ A đến đường thẳng lớn nhất.
Câu hỏi:
Trên mặt phẳng tọa độ Oxy cho đường thẳng d: y = (2m + 10)x - 4m - 1 và điểm A(-2;3). Tìm m để khoảng cách từ A đến đường thẳng lớn nhất.
Trả lời:
Gọi điểm mà đồ thị hàm số luôn đi qua là M(x0; y0)
Ta có: (2m + 10)x0 - 4m - 1 = y0
⇔ 2mx0 + 10x0 – 4m – 1 – y0 = 0
⇔ 2m(x0 – 2) + (10x0 – y0 – 1) = 0
⇔
Vậy đồ thị hàm số luôn đi qua M(2; 19)
Gọi khoảng cách từ A đến d là AH
Xét trong tam giác vuông AHM luôn có: AH ≤ AM
Vậy AHmax khi AH = AM tức AM ⊥ d
Gọi phương trình đường thẳng AM có dạng y = ax + b
Ta có:
Vậy AM có phương trình: y = 4x + 11.
Để AM ⊥ d thì 4.(2m + 10) = -1
Suy ra:
Vậy thì khoảng cách từ A đến đường thẳng d lớn nhất.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:
a)
b) Tứ giác OKME là hình chữ nhật.
c) P, O, N thẳng hàng và KE // PN.
Xem lời giải »
Câu 2:
Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức
Xem lời giải »
Câu 3:
Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).
Xem lời giải »
Câu 4:
Cho tam giác ABC. Hai điểm M và N di chuyển sao cho . Chứng minh MN luôn đi qua một điểm cố định.
Xem lời giải »
Câu 5:
Tìm tập hợp các số tự nhiên n sao cho (3n + 7) chia hết cho (n - 2).
Xem lời giải »
Câu 6:
Tìm tập hợp các số tự nhiên n sao cho (6n + 9) chia hết cho (2n + 1).
Xem lời giải »
Câu 7:
Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh BC.BE.CF = AH3.
Xem lời giải »
Câu 8:
Cho góc . Lấy hai điểm A, B thuộc tia Ox sao cho OA < OB. Lấy hai điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:
a) AD = BC.
b) DEAB = DECD.
c) OE là tia phân giác của góc xOy.
Xem lời giải »