X

Các dạng bài tập Toán lớp 12

o tam giác ABC, IG vuông góc với IC trong đó I là tâm đường tròn


Câu hỏi:

Cho tam giác ABC, IG vuông góc với IC trong đó I là tâm đường tròn nội tiếp, G là trọng tâm. Chứng minh \(\frac{{a + b + c}}{3} = \frac{{2ab}}{{a + b}}\).

Trả lời:

o tam giác ABC, IG vuông góc với IC trong đó I là tâm đường tròn (ảnh 1)

Ta chứng minh \(a\overrightarrow {IA} + b\overrightarrow {IB} + c\overrightarrow {IC} = \overrightarrow 0 \)

\(a\left( {\overrightarrow {IC} + \overrightarrow {CA} } \right) + b\left( {\overrightarrow {IC} + \overrightarrow {CB} } \right) + c\overrightarrow {IC} = \overrightarrow 0 \)

\(\overrightarrow {CI} = \frac{1}{{a + b + c}}\left( {a.\overrightarrow {CA} + b.\overrightarrow {CB} } \right)\)

\(\overrightarrow {GI} = \overrightarrow {CI} - \overrightarrow {CG} = \left( {\frac{a}{{a + b + c}} - \frac{1}{3}} \right)\overrightarrow {CA} + \left( {\frac{b}{{a + b + c}} - \frac{1}{3}} \right)\overrightarrow {CB} \)

Khi đó: \(\left[ {\left( {2a - b - c} \right)\overrightarrow {CA} + \left( {2b - a - c} \right)\overrightarrow {CB} } \right]\left( {a\overrightarrow {CA} + b\overrightarrow {CB} } \right) = \overrightarrow 0 \)

\(\left( {ab + \overrightarrow {CA} .\overrightarrow {CB} } \right)\left[ {b\left( {2a - b - c} \right) + a\left( {2b - a - c} \right)} \right] = 0\)

Do \(\left( {ab + \overrightarrow {CA} .\overrightarrow {CB} } \right) = ab + ab\cos C = ab\left( {1 + \cos C} \right) > 0\)

Nên ta có: b(2a – b – c) + a(2b – a – c) = 0

b(3a – a – b – c) + a(3b – a – b – c) = 0

6ab = (a + b)(a + b + c)

\(\frac{{a + b + c}}{3} = \frac{{2ab}}{{a + b}}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Xét xem dãy un = 3n – 1 có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.

Xem lời giải »


Câu 2:

Một vé xem phim có mức giá là 60000 đồng. Trong dịp khuyến mãi cuối năm 2018, số lượng người xem phim tăng lên 45% nên tổng doanh thu cũng tăng 8,75%. Hỏi rạp phim đã giảm giá mỗi vé bao nhiêu % so với giá bán ban đầu?

Xem lời giải »


Câu 3:

Tính giá trị của biểu thức: P = (x – 10)2 – x(x + 80) tại x = 0,87.

Xem lời giải »


Câu 4:

Tính giá trị biểu thức A = 100 – 99 + 98 – 97 + … + 4 – 3 + 2.

Xem lời giải »


Câu 5:

Cho tam giác ABC có \(\widehat B = \widehat C = 40^\circ \). Kẻ phân giác BD.

Chứng minh BD + AD = BC.

Xem lời giải »


Câu 6:

Cho tam giác ABC có \(\widehat A = 150^\circ \). Diện tích tam giác ABC là:

A. \(\frac{1}{4}ab\)

B. \(\frac{1}{2}bc\)

C. \( - \frac{1}{2}ab\)

D. \(\frac{1}{4}bc\)

Xem lời giải »


Câu 7:

Giải phương trình: x – \(\sqrt {x - 1} \) – 3 = 0.

Xem lời giải »


Câu 8:

Cho các hàm số y = 3x – 2 (d1); y = −x + 6 (d2).

a) Vẽ các đường thẳng (d1), (d2) trên cùng một mặt phẳng tọa độ.

b) Gọi A, B, C lần lượt là giao điểm của (d1), (d2); (d1) với trục hoành; (d2) với trục hoành

Tính chu vi và diện tích tam giác ABC.

Xem lời giải »