Số học sinh khối 6 của một trường trong khoảng từ 400 đến 500 em. Nếu xếp hàng 7 em thì thừa ra 3 em, còn nếu xếp hàng 6 em, 8 em hoặc 10 em thì vừa đủ
Câu hỏi:
Số học sinh khối 6 của một trường trong khoảng từ 400 đến 500 em. Nếu xếp hàng 7 em thì thừa ra 3 em, còn nếu xếp hàng 6 em, 8 em hoặc 10 em thì vừa đủ. Hỏi số học sinh khối 6 của trường là bao nhiêu em?
Trả lời:
Gọi số học sinh khối 6 là a (a ∈ ℕ*, 400 < a < 500).
Theo đề bài ta có a ∈ BC(6, 8, 10)
Ta có
6 = 2 . 3
8 = 23
10 = 2 . 5
Suy ra BCNN(6, 8, 10) = 23 . 3 . 5 = 120
Suy ra BC(6, 8, 10) ={0; 120; 240; 360; 480; 600; ...}
Mà 400 < a < 500
Suy ra a = 480
Vậy số học sinh là 480 em.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:
a)
b) Tứ giác OKME là hình chữ nhật.
c) P, O, N thẳng hàng và KE // PN.
Xem lời giải »
Câu 2:
Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức
Xem lời giải »
Câu 3:
Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).
Xem lời giải »
Câu 4:
Cho tam giác ABC. Hai điểm M và N di chuyển sao cho . Chứng minh MN luôn đi qua một điểm cố định.
Xem lời giải »
Câu 5:
Cho tống S = 30 + 42 - 6 + x với x thuộc ℕ. Tìm x để S chia hết cho 6.
Xem lời giải »
Câu 6:
Cho A = 2 + 22 +....... + 260.
a) Thu gọn tổng A.
b) Chứng tỏ rằng: A chia hết cho 3, 5, 7.
Xem lời giải »
Câu 7:
Chứng minh rằng nếu chia hết cho 11 thì cũng chia hết cho 11 (biết rằng là số tự nhiên có hai chữ số; là số tự nhiên có 4 chữ số).
Xem lời giải »
Câu 8:
Tìm 2 số tự nhiên a và b biết a - b = 84 , ƯCLN(a, b) = 12 .
Xem lời giải »