Công thức tính Thể tích khối lăng trụ cực hay - Toán lớp 12
Công thức tính Thể tích khối lăng trụ cực hay
Với Công thức tính Thể tích khối lăng trụ cực hay Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Thể tích khối lăng trụ từ đó đạt điểm cao trong bài thi môn Toán lớp 12.
1. Định nghĩa
Cho hai mặt phẳng song song (α) và (α'). Trên (α) ta lấy đa giác lồi A1 A2…An, qua các đỉnh này ta dựng các đường thẳng song song cắt (α') tại A'1,A'2,…A'n. Hình bao gồm 2 đa giác A1 A2…An, A'1 A'2…A'n và các hình bình hành A1 A2 A'1 A'2,… được gọi là hình lăng trụ, kí hiệu là A1 A2…An A'1 A'2…A'n.
Nhận xét:
+ Các mặt bên của hình lăng trụ bằng nhau và song song với nhau
+ Các mặt bên là các hình bình hành
+ Hai đáy hình lăng trụ là hai đa giác bằng nhau
2. Hình lăng trụ đứng - hình lăng trụ đều, hình hộp chữ nhật và hình lập phương
a) Hình lăng trụ đứng: là hình lăng trụ có cạnh bên vuông góc với đáy. Độ dài cạnh bên được gọi là chiều cao của hình lăng trụ. Lúc đó các mặt bên của hình lăng trụ đứng là các hình chữ nhật
b) Hình lăng trụ đều: là hình lăng trụ đứng có đáy là đa giác đều. Các mặt bên của lăng trụ đều là các hình chữ nhật bằng nhau. Ví dụ: hình lăng trụ tam giác đều, tứ giác đều... thì ta hiểu là hình lăng trụ đều
c) Hình hộp: Là hình lăng trụ có đáy là hình bình hành
d) Hình hộp đứng: là hình lăng trụ đứng có đáy là hình bình hành
e) Hình hộp chữ nhật: là hình hộp đứng có đáy là hình chữ nhật
f) Hình lăng trụ đứng có đáy là hình vuông và các mặt bên đều là hình vuông được gọi là hình lập phương (hay hình chữ nhật có ba kích thước bằng nhau được gọi là hình lập phương)
Nhận xét:
+ Hình hộp chữ nhật là hình lăng trụ đứng (Có tất cả các mặt là hình chữ nhật
+ Hình lập phương là hình lăng trụ đều (tất cả các cạnh bằng nhau)
+ Hình hộp đứng là hình lăng trụ đứng (mặt bên là hình chữ nhật, mặt đáy là hình bình hành)
3. Thể tích khối lăng trụ:
V=B.h : Với B là diện tích đáy và h là chiều cao
4. So sánh khối lăng trụ đứng và khối lăng trụ đều:
ĐỊNH NGHĨA: | TÍNH CHẤT |
+ Hình lăng trụ đứng là hình lăng trụ có cạnh bên vuông góc với mặt đáy |
+ Các mặt bên hình lăng trụ đứng là hình chữ nhật + Các mặt bên hình lăng trụ đứng vuông góc với mặt đáy + Chiều cao là cạnh bên |
+ Hình lăng trụ đều là hình lăng trụ đứng có đáy là đa giác đều |
+ Các mặt bên của hình lăng trụ đều là các hình chữ nhật bằng nhau + Chiều cao là cạnh bên |
Cách tính thể tích khối lăng trụ đứng, lăng trụ đều
A. Phương pháp giải & Ví dụ
1. Khối lăng trụ đứng
Định nghĩa: Hình lăng trụ đứng là hình lăng trụ có cạnh bên vuông góc với mặt đáy.
Tính chất:
+ Các mặt bên hình lăng trụ đứng là hình chữ nhật
+ Các mặt bên hình lăng trụ đứng vuông góc với mặt đáy
+ Chiều cao là cạnh bên
2. Khối lăng trụ đều
Định nghĩa: Hình lăng trụ đều là hình lăng trụ đứng có đáy là đa giác đều
Tính chất:
+ Các mặt bên của hình lăng trụ đều là các hình chữ nhật bằng nhau
+ Chiều cao là cạnh bên.
Ví dụ minh họa
Bài 1: Cho hình hộp đứng có các cạnh AB = 3a, AD = 2a, AA’= 2a. Tính thể tích của khối A’.ACD’
Hướng dẫn:
Do mặt bên ADD’A’ là hình chữ nhật nên ta có:
Bài 2: Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác đều cạnh a√3, góc giữa và đáy là 60º. Gọi M là trung điểm của . Thể tích của khối chóp M.A’B’C’ là:
Hướng dẫn:
Bài 3: Cho khối lăng trụ đứng ABC.A1 B1 C1 có đáy ABC là tam giác vuông cân tại B có BA = BC = 2a, biết A1 M=3a với M là trung điểm của BC. Tính thể tích khối lăng trụ ABC.A1 B1 C1
Hướng dẫn:
Ta có:
Cách tính thể tích khối lăng trụ xiên
A. Phương pháp giải & Ví dụ
Hình lăng trụ xiên là hình lăng trụ có cạnh bên không vuông góc với đáy.
Ví dụ minh họa
Bài 1: Cho hình lăng trụ ABC.A’B’C’, ∆ABC đều có cạnh bằng a, AA’ = a và đỉnh A’ cách đều A, B, C. Tính thể tích khối lăng trụ ABC.A’B’C’
Hướng dẫn:
Gọi M là trung điểm của AB, O là tâm của tam giác đều ABC.
Do A’ cách đều các điểm A, B, C nên A'O ⊥ (ABC)
Tam giác ABC đều cạnh a nên:
Xét ∆A’AO vuông tại O có:
Bài 2: Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AB = a, ∠(ACB) =300; M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Tính thể tích khối lăng trụ ABC.A’B’C’
Hướng dẫn:
A'H ⊥ (ABC) nên A’H là đường cao của lăng trụ
AH là hình chiếu vuông góc của AA’ lên mặt (ABC) nên góc giữa AA’ và (ABC) là góc (A'AH)=600
∆ABC vuông tại B có AB = a, ∠(ACB)=300
BM là trung tuyến
⇒BM=AM=AC/2=a
⇒BM=AM=AB=a
Do đó ∆ABM đều cạnh a có AH ⊥ BM
⇒AH=(a√3)/2
Xét tam giác AA’H có:
Bài 3: Cho hình lăng trụ ABC.A’B’C’, đáy ABC có AC = a√3, BC = 3a, ∠(ACB)=300. Cạnh bên hợp với mặt phẳng đáy góc 600 và mặt phẳng (A’BC) vuông góc với mặt phẳng (ABC). Điểm H trên cạnh BC sao cho HC = 3BH và mặt phẳng (A’AH) vuông góc với mặt phẳng (ABC). Tính thể tích khối lăng trụ ABC.A’B’C’
Hướng dẫn:
⇒AH là hình chiếu vuông góc của AA’ lên (ABCD)
Khi đó góc giữa AA’ và (ABCD) là góc (A'AH) =600
Ta có: BC = 3a, HC = 3BH ⇒ HC=9a/4
Xét tam giác ACH có:
Xét tam giác AA’H có: