Tìm các số nguyên n biết 3n - 1 chia hết cho n - 2
Câu hỏi:
Tìm các số nguyên n biết 3n – 1 chia hết cho n – 2.
Trả lời:
Ta có: 3n – 1 = 3(n – 2) + 5
Để 3n – 1 chia hết cho n – 2 thì 3(n – 2) + 5 chia hết cho n – 2
Mà 3(n – 2) ⋮ (n – 2) nên 5 chia hết cho (n – 2)
⇒ n – 2 ∈ Ư(5)
⇒ n – 2 ∈ {–5; –1; 1; 5}
⇒ n ∈ {–3; 1; 3; 7}
Vậy n ∈ {–3; 1; 3; 7}.