Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l cực hay - Toán lớp 12
Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l cực hay
Với Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l cực hay Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l từ đó đạt điểm cao trong bài thi môn Toán lớp 12.
A. Phương pháp giải & Ví dụ
Phương pháp giải
Tìm m để hàm số y = ax3 + bx2 + cx + d có độ dài khoảng đồng biến (nghịch biến) = l.
Bước 1: Tính y'=f'(x).
Bước 2: Tìm điều kiện để hàm số có khoảng đồng biến và nghịch biến: (1).
Bước 3: Biến đổi |x1-x2 | = l thành (x1+x2 )2 - 4x1.x2=l2 (2).
Bước 4: Sử dụng định lý Viét đưa (2) thành phương trình theo m.
Bước 5: Giải phương trình, so với điều kiện (1) để chọn nghiệm.
Kiến thức cần nhớ
Hàm đa thức bậc ba: y = f(x) = ax3+bx2+ cx + d (a ≠ 0) ⇒ f'(x)=3ax2+ 2bx + c
Sử dụng định lý vi ét cho tam thức bậc hai f'(x)= 3ax2 + 2bx + c có
Ví dụ minh họa
Ví dụ 1: Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = 1/3 x3 - 2mx2 + 2mx - 3m + 4 nghịch biến trên một đoạn có độ dài là 3.
Hướng dẫn
Ta có f'(x) = x2 - 4mx + 2m
Hàm số nghịch biến trên khoảng có độ dài bằng 3 khi và chỉ khi f'(x)= 0 có hai nghiệm phân biệt x1,x2 (x1 < x2) thỏa mãn |x1-x2 |=3
+ f'(x)= 0 có hai nghiệm phân biệt x1,x2 ⇔ Δ'= 4m2 - 2m > 0 ⇔
Theo Vi ét ta có
+ Với |x1-x2 | = 3 ⇔ (x1 + x1)2 - 4x1 x2 - 9 = 0
(thỏa mãn)
Vậy giá trị của m cần tìm là m=.
Ví dụ 2: Tìm m để hàm số y = -x3 + 3x2 + (m-1)x + 2m - 3 đồng biến trên một khoảng có độ dài nhỏ hơn 1
Hướng dẫn
Ta có f'(x)= -3x2 + 6x + m - 1
Hàm số đồng biến trên khoảng có độ dài lớn hơn 1 khi và chỉ khi f'(x) = 0 có hai nghiệm phân biệt x1,x2 (x1 < x2) thỏa mãn |x1-x2 | > 1
+ f'(x)= 0 có hai nghiệm phân biệt x1,x2 ⇔ Δ'= 3m + 6 > 0 ⇔ m > -2
Theo Vi ét ta có
+ Với |x1-x2 | > 1 ⇔ (x1+x2 )2-4x1 x2-1 > 0 ⇔ 4m + 5 > 0 ⇔ m > -5/4
Kết hợp điều kiện ta được m > -5/4
Ví dụ 3: Xác định m để hàm só y = -x4 +(m - 2) x2 + 1 có khoảng nghịch biến (x1;x2) và độ dài khoảng này bằng 1.
Hướng dẫn
Ta có y' = -4x3 + 2(m - 2)x
Để hàm số có khoảng nghịch biến (x1;x2) thì phương trình -2x2 + m - 2 = 0 phải có hai nghiệm phân biệt
Giả sử x1 < 0 < x2, khi đó hàm số sẽ nghịch biến trên khoảng (x1;0) và (x2; +∞)
Vì độ dài khoảng nghịch biến bằng 1 nên khoảng (x1;0) có độ dài bằng 1 hay x1 = -1
Vì -2x2 + m - 2 = 0 có một nghiệm là -1 nên -2 + m - 2 = 0 ⇔ m = 4 (thỏa mãn)
Vậy giá trị của tham số m cần tìm là m = 4
B. Bài tập vận dụng
Câu 1: Xác định giá trị của tham số m để hàm số y = f(x) = (m + 1)x3 - 3(m+1)x2 + 2mx + 4 đồng biến trên khoảng có độ dài không nhỏ hơn 1.
Lời giải:
Hàm số đã cho xác định trên D = R.
Với m = -1. Khi đó hàm số trở thành y = -2x + 4 ; y' = -2 < 0 ∀x∈R, không thỏa mãn yêu cầu bài toán.
Với m ≠ -1. Ta có f'(x)= 3(m+1)x2 - 6(m + 1)x + 2m
+ Hàm số đồng biến trên khoảng có độ dài không nhỏ hơn 1 khi và chỉ khi f'(x) = 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn [x1;x2 ] thỏa mãn |x1 - x2 | ≥ 1
+ f'(x)= 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn[x1;x2 ]
Theo Viét ta có
+ Với |x1 - x2 | ≥ 1 ⇔ (x1 + x2 )2 - 4x1 x2 - 1 ≥ 0
Đối chiếu điều kiện ta có m ≤ -9.
Câu 2: Xác định giá trị của tham số m để hàm số y = x3 - mx2 + (m + 36)x - 5 nghịch biến trên khoảng có độ dài bằng 4√2.
Lời giải:
Ta có f'(x) = 3x2 - 2mx + m + 36
Hàm số nghịch biến trên khoảng có độ dài bằng 4√2 khi và chỉ khi f'(x) = 0 có hai nghiệm phân biệt x1,x1 (x1 < x2) thỏa mãn |x1 - x1 |= 4√2v
+ f'(x) = 0 có hai nghiệm phân biệt x1,x2
Theo Vi ét ta có
+ Với |x1 - x2 |= 4√2 ⇔ (x1+x2 )2 - 4x1 x2 - 32 = 0
(thỏa mãn)
Vậy giá trị của tham số m cần tìm là m = 15; m = -12
Câu 3: Xác định giá trị của tham số m để hàm số y = x3 + 3x2 + mx + m nghịch biến trên đoạn có độ dài nhỏ hơn
Lời giải:
Hàm số đã cho xác định trên D = R.
Ta có f'(x)= 3x2 + 6x + m; Δ' = 9 - 3m
Hàm số nghịch biến trên khoảng có độ dài bằng 4√2 khi và chỉ khi f'(x)= 0 có hai nghiệm phân biệt x1,x1 (x1 < x2) thỏa mãn |x1 - x2 |< 2√2
+ f'(x)= 0 có hai nghiệm phân biệt x1,x2 ⇔ Δ'= 9 - 3m > 0 m < 3
Theo định lý Vi – ét ta có:
Hàm số nghịch biến trên đoạn có độ dài nhỏ hơn 2√2
⇔ l =|x1 - x2 | < 2√2 ⇔(x1 - x2 )2 = 8 ⇔(x1 + x2 )2 - 4x1 x2 = 8 ⇔ 4 - 4/3 m=8 ⇒ m = -3.
Vậy giá trị của tham số m cần tìm là m = -3
Câu 4: Xác định giá trị của tham số m để hàm số y = -x3 + x2 - (2 - m)x + 1 nghịch biến trên đoạn có độ dài bằng 2.
Lời giải:
Hàm số đã cho xác định trên D = R.
Ta có f'(x) = -3x2 + 2x - 2 + m; Δ' = -5 + m
Hàm số nghịch biến trên khoảng có độ dài bằng 2khi và chỉ khi f'(x)= 0 có hai nghiệm phân biệt x1,x2 (x1 < x2) thỏa mãn |x1-x2 | = 2
+ f'(x) = 0 có hai nghiệm phân biệt x1,x2 ⇔ Δ'= -5 + m > 0 ⇔ m > 5
Theo định lý Viét ta có: .
Hàm số đồng biến trên đoạn có độ dài bằng 2 ⇔ l =|x1 - x2 |= 2 ⇔(x1 - x2 )2 = 4
Vậy giá trị của tham số m cần tìm là m = 14/3
Câu 5: Tất cả các giá trị thực của tham số m để hàm số y = 2x3 + 3(m - 1)x2 + 6(m - 2)x + 2017 nghịch biến trên khoảng (a;b) sao cho b - a > 3.
Lời giải:
Ta có y' = 6x2 + 6(m - 1)x + 6(m - 2)
Hàm số nghịch biến trên (a;b) ⇔ x2 + (m - 1)x + (m - 2) ≤ 0 ∀ x ∈(a; b)
Δ = m2 - 6m + 9
TH1: Δ ≤ 0 ⇒ x2 + (m - 1)x + (m - 2) ≥ 0 ∀ x ∈ R ⇒Vô lí
TH2: Δ > 0 ⇔ m ≠ 3 ⇒ y' có hai nghiệm x1,x2 (x2 > x1 )
⇒ Hàm số luôn nghịch biến trên (x1;x2 ).
Yêu cầu đề bài: ⇔ x2 - x1 > 3 ⇔ (x2 - x1 )2 > 9 ⇔ (x1 + x2 )2 - 4(x1.x2)>9