X

Các dạng bài tập Toán lớp 12

Tính tổng F = 1^2 + 2^2 + 3^2 + + n^2


Câu hỏi:

Tính tổng F = 12 + 22 + 32 + … + n2.

Trả lời:

F = 12 + 22 + 32 + … + n2

F = 1 + (1 + 1).2 + (1 + 2).3 + (1 + 3).4 + … + (1 + n – 1)n

F = 1 + (2 + 1.2) + (3 + 2.3) + (4+ 3.4) + … + [n + (n – 1)n]

F = (1 + 2 + 3 + 4 + … + n) + [1.2 + 2.3 + 3.4 + …. + (n – 1)n]

Đặt A = 1 + 2 + 3 + 4 + … + n thì A = \(\frac{{n\left( {n + 1} \right)}}{2}\left( 1 \right)\)

Đặt B = [1.2 + 2.3 + 3.4 + …. + (n – 1)n]

Xét 3B = 1.2.3 + 2.3.3 + 3.4.3 + … + (n – 1).n.3

3B = [1.2.3 + 2.3.4 + … + (n – 1).n.(n + 1)] – (1.2.3 + 2.3.4 + … + (n – 2)(n – 1)n)

3B = (n – 1)n(n + 1)

B = \(\frac{{\left( {n--1} \right)n\left( {n + 1} \right)}}{3}\left( 2 \right)\)

Từ (1) và (2) suy ra:

F = \(\frac{{n\left( {n + 1} \right)}}{2} + \frac{{\left( {n--1} \right)n\left( {n + 1} \right)}}{3} = \frac{{3{n^2} + 3n + 2n\left( {{n^2} - 1} \right)}}{6} = \frac{{2{n^3} + 3{n^2} + n}}{6}\)

\( = \frac{{n\left( {2{n^2} + 3n + 1} \right)}}{6} = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\)

Vậy F = 12 + 22 + 32 + … + n2 \( = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Xét xem dãy un = 3n – 1 có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.

Xem lời giải »


Câu 2:

Một vé xem phim có mức giá là 60000 đồng. Trong dịp khuyến mãi cuối năm 2018, số lượng người xem phim tăng lên 45% nên tổng doanh thu cũng tăng 8,75%. Hỏi rạp phim đã giảm giá mỗi vé bao nhiêu % so với giá bán ban đầu?

Xem lời giải »


Câu 3:

Tính giá trị của biểu thức: P = (x – 10)2 – x(x + 80) tại x = 0,87.

Xem lời giải »


Câu 4:

Tính giá trị biểu thức A = 100 – 99 + 98 – 97 + … + 4 – 3 + 2.

Xem lời giải »


Câu 5:

Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N. Tính số đo góc \(\widehat {MON}\).

Xem lời giải »


Câu 6:

Cho a, b là các số nguyên dương và q = \(\frac{{{a^2} + {b^2}}}{{ab + 1}}\) là số nguyên. Chứng minh rằng q là số chính phương.

Xem lời giải »


Câu 7:

Cho hình vuông ABCD cạnh a. Lấy M thuộc AB, N thuộc AD sao cho AM + AN + MN = 2a. Chứng minh \(\widehat {MCN} = 45^\circ \).

Xem lời giải »


Câu 8:

Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của tia CD lấy điểm F sao cho CE = CF.

a) Chứng minh DE = BF.

b) Tia DE cắt BF tại H. Chứng minh \(\widehat {DHF} = 90^\circ \).

c) Gọi I là trung điểm của EF, K là giao điểm của FE và BD. Chứng minh tứ giác AOIK là hình bình hành.

d) Chứng minh A, H, K thẳng hàng.

Xem lời giải »