Trong các số phức z thỏa mãn |z - 3i| + | i z ngang + 3| =10
Câu hỏi:
Trong các số phức z thỏa mãn |z - 3i| + | i + 3| =10 , tìm số phức z có mô-đun nhỏ nhất.
A. z = 2 hoặc – 2
B. z= 3 hoặc – 3
C. z = 4 hoặc – 4
D. tất cả sai
Trả lời:
Chọn C.
Áp dụng công thức:
Ta có:
Giải bất phương trình ta có 0 ≤ |z| ≤ 4
Vậy min|z| = 4 đạt được khi
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hai số phức z1; z2 khác 0 thỏa mãn .Gọi A; B lần lượt là các điểm biểu diễn cho số phức z1; z2. Khi đó tam giác OAB là:
Xem lời giải »
Câu 2:
Cho số phức z thỏa mãn . Giá trị của |z| là ?
Xem lời giải »
Câu 4:
Số nghiệm của phương trình với ẩn số phức z: 4z2 + 8|z|2 - 3 = 0 là:
Xem lời giải »
Câu 5:
Trong các số phức z thỏa mãn | z - 2 + i | = | + 1 -4i | , tìm số phức có mô-đun nhỏ nhất.
Xem lời giải »
Câu 7:
Cho số phức z thỏa mãn |z – 2- 3i| = 1. Giá trị lớn nhất của là?
Xem lời giải »