X

Các dạng bài tập Toán lớp 12

Trong hệ tọa độ Oxyz cho A (3;3;0), B (3;0;3), C (0;3;3)


Câu hỏi:

Trong hệ tọa độ Oxyz cho A (3;3;0), B (3;0;3), C (0;3;3). Mặt phẳng (P) đi qua O, vuông góc với mặt phẳng (ABC) sao cho mặt phẳng (P) cắt các cạnh AB, AC tại các điểm M, N thỏa mãn thể tích tứ diện OAMN nhỏ nhất. Mặt phẳng (P) có phương trình:

A. x+y-2z=0. 

B. x+y+2z=0. 

C. x-z=0. 

D. y-z=0

Trả lời:

Chọn A

Nhận thấy tam giác ABC đều có trọng tâm G (2;2;2), và OG ⊥ (ABC) nên hình chiếu của O lên (ABC) là điểm G

Vì OG và  cố định nên thể tích  nhỏ nhất khi và chỉ khi AM. AN nhỏ nhất.

Vì M, N, G thẳng hàng nên , suy ra . Đẳng thức xảy ra khi .

Khi đó mặt phẳng (P) đi qua O và nhận  là một vectơ pháp tuyến, do đó (P): x+y-2z=0.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất.

Xem lời giải »


Câu 2:

Trong không gian Oxyz, cho hai điểm M (2;2;1), N(-83;43;83) . Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác OMN và tiếp xúc với mặt phẳng (Oxz).

Xem lời giải »


Câu 3:

Trong không gian Oxyz, Cho mặt phẳng (R): x+y-2z+2=0 và đường thẳng 1:x2=y1=z-1-1.Đường thẳng Δ2 nằm trong mặt phẳng (R) đồng thời cắt và vuông góc với đường thẳng Δ1 có phương trình là:

Xem lời giải »


Câu 4:

Trong không gian Oxyz, mặt phẳng (α) đi qua M (1;1;4) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C phân biệt sao cho tứ diện OABC có thể tích nhỏ nhất. Tính thể tích nhỏ nhất đó.

Xem lời giải »


Câu 5:

Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9, điểm A (0; 0; 2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là:

Xem lời giải »


Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho các điểm A (2;0;0), B (0;3;0), C (0;0;6), D (1;1;1). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểm O, A, B, C, D?

Xem lời giải »


Câu 7:

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A (1;1;0), B (0;-1;2). Biết rằng có hai mặt phẳng cùng đi qua hai điểm A, O và cùng cách B một khoảng bằng 3. Véctơ nào trong các véctơ dưới đây là một véctơ pháp tuyến của một trong hai mặt phẳng đó.

Xem lời giải »


Câu 8:

Trong không gian với hệ tọa độ Oxy, cho mặt phẳng (P): 2y-z+3=0 và điểm A (2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:

Xem lời giải »