X

Các dạng bài tập Toán lớp 12

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3)


Câu hỏi:

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3). Tính đường kính d của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy).

A. d =213

B. d =241

C. d = 226

D. d = 211

Trả lời:

Chọn C

Gọi tâm mặt cầu là: I(x;y;0)

IA=IBIA=IC(x-1)2+(y-2)2+42=(x-1)2+(y+3)2+12(x-1)2+(y-2)2+42=(x-2)2+(y-2)2+32  (y-2)2+42=(y+3)2+12x2-2x+1+16=x2-4x+4+910y=102x=-4x=-2y=1d=2R=2(-3)2+(-1)2+42=226

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian Oxyz, cho đường thẳng d: x-11=y-22=z-31 và mặt phẳng (α): x + y -z – 2 = 0. Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng (α), đồng thời vuông góc và cắt đường thẳng d?

Xem lời giải »


Câu 2:

Trong không gian Oxyz, cho mặt phẳng (α): 2x + y -2z – 2 = 0, đường thẳng d:x+11=y+22=z+32  và điểm A12;1;1 Gọi Δ là đường thẳng nằm trong mặt phẳng (α), song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng Δ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng.

Xem lời giải »


Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD (tham khảo hình vẽ bên).

Tính côsin của góc giữa hai mặt phẳng (GMN) (ABCD)

Xem lời giải »


Câu 4:

Trong không gian Oxyz, cho mặt phẳng α x – z – 3 = 0 và điểm M (1; 1; 1). Gọi A là điểm thuộc tia Oz. Gọi B là hình chiếu của A lên (α). Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng:

Xem lời giải »


Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C không trùng với gốc tọa độ sao cho M là trực tâm tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).

Xem lời giải »


Câu 6:

Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của SA BC. Biết góc giữa MN và mặt phẳng (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng BC DM là:

Xem lời giải »


Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho ΔABC biết A(2;0;0), B(0;2;0), C(1;1;3). Gọi H(x0;y0;z0) là chân đường cao hạ từ đỉnh A xuống BC. Khi đó x0 + y0 + z0 bằng:

Xem lời giải »


Câu 8:

Cho tứ diện ABCD có các cạnh AB, AC, AD vuông góc với nhau từng đôi một và AB = 3a , AC = 6a, AD = 4a. Gọi M, N, P lần lượt là trung điểm các cạnh BC, CD, DB. Tính thể tích khối đa diện AMNP.

Xem lời giải »