X

Các dạng bài tập Toán lớp 12

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(2,1,-2), B(5,1,1) và mặt


Câu hỏi:

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(2,1,-2), B(5,1,1) và mặt cầu S:x2+y2+z2+6y+12z+9=0 . Xét đường thẳng d đi qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến d nhỏ nhất. Phương trình của đường thẳng d 

A. x=2y=1+tz=2+2t .

B. x=2y=14tz=2+t .
C. x=2+2ty=12tz=2+t .
D. x=2+ty=1+4tz=2t .

Trả lời:

Mặt cầu S:x2+y2+z2+6y+12z+9=0  có tâm I0;3;6  bán kính R=6 .

IA=6=RAS, IB=310>R nên B nằm ngoài (S).

Media VietJack

Đường thẳng d đi qua A và tiếp xúc với (S) nên d nằm trong mặt phẳng (P) tiếp xúc với mặt cầu (S) tại A.

Mặt phẳng (P) đi qua A và nhận IA  làm vectơ pháp tuyến có phương trình là x+2y+2z=0 .

Gọi H là hình chiếu của B lên (P) thì tọa độ của H4;1;1 .

Ta có: dB;ddB;P=BH .

Vậy khoảng cách từ B đến d nhỏ nhất khi d đi qua H. Ta có ud=AH=2;2;1 .

Suy ra phương trình đường thẳng d là: x=2+2ty=12tz=2+t .

Chọn C.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Viết phương trình đường thẳng d đi qua điểm A(1,1,-1) cho trước, nằm trong mặt phẳng P:2xyz2=0  và cách điểm M0;2;1  một khoảng lớn nhất.

Xem lời giải »


Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A1;1;0,B2;1;1,C0;1;2,D1;1;1 . Khoảng cách giữa AB và CD 

Xem lời giải »


Câu 3:

Cho phương trình mặt phẳng (P): 2x+y+z-3=0, đường thẳng d':x11=y2=z1  và điểm A0;2;1 . Viết phương trình đường thẳng d đi qua A, nằm trong (P) sao cho khoảng cách d và d' đạt giá trị lớn nhất.

Xem lời giải »


Câu 4:

Cho phương trình mặt phẳng (P): 2x+y+z-3=0, đường thẳng d':x11=y2=z1  và điểm A0;2;1 . Viết phương trình đường thẳng d đi qua A, nằm trong (P) sao cho khoảng cách d và d' đạt giá trị lớn nhất.

Xem lời giải »


Câu 5:

Trong không gian Oxyz, cho điểm P(a,b,c). Khoảng cách từ điểm P đến trục tọa độ Oy bằng

Xem lời giải »