X

Các dạng bài tập Toán lớp 12

Trong mặt phẳng phức Oxy, tâp hợp các điểm biểu diễn số phức z


Câu hỏi:

Trong mặt phẳng phức Oxy, tâp hợp các điểm biểu diễn số phức z sao cho z 2 là số thuần ảo là hai đường thẳng d; d2. Góc α giữa 2 đường thẳng d; d2 là bao nhiêu?

A. α =  450.

B. α = 600.

C. α =  900.

D. α =  300.

Trả lời:

Chọn C.

Gọi M(x; y) là điểm biểu diễn số phức z = x + yi

Ta có: z2 = ( x2 -  y2)  + 2xyi là số thuần ảo khi và chỉ khi x2 - y2 = 0

Hay y = ± x.

Tập hợp các điểm biểu diễn số phức z thỏa mãn đề bài nằm trên 2 đường thẳng trên và 2 đường thẳng này vuông góc với nhau (vì tích hai hệ số góc bằng -1).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho các số phức z thỏa mãn |z – 2 – 4i| = 2. Gọi z1; z2 số phức có module lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức bằng?

Xem lời giải »


Câu 2:

Gọi z1, z2 lần lượt là hai nghiệm của phương trình z2 - (1 + 3i) z – 2 + 2i = 0  và thỏa mãn | z1| > | z2|. Tìm giá trị của biểu thức 

Xem lời giải »


Câu 3:

Gọi z1; z2  lần lượt là hai nghiệm của phương trình z2 – 4z + 7 = 0 .Tính giá trị của biểu thức

Xem lời giải »


Câu 4:

Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?

Xem lời giải »


Câu 5:

Tập hợp các điểm biểu diễn số phức z  thỏa mãn |z + 2| + |z – 2| = 5  trên mặt phẳng tọa độ là một

Xem lời giải »