Bài tập Lũy thừa trong đề thi Đại học có lời giải (4 dạng) - Toán lớp 12
Bài tập Lũy thừa trong đề thi Đại học có lời giải (4 dạng)
Với Bài tập Lũy thừa trong đề thi Đại học có lời giải (4 dạng) Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Lũy thừa từ đó đạt điểm cao trong bài thi môn Toán lớp 12.
Dạng 1. Tìm điều kiện về cơ số của lũy thừa
1. Phương pháp giải
+ Khi xét lũy thừa với số mũ 0 và số mũ nguyên âm thì cơ số phải khác 0.
+ Khi xét lũy thừa với số mũ không nguyên âm thì cơ số phải dương.
2. Ví dụ minh họa
Ví dụ 1. Tìm x để biểu thức (4x − 2)-3 có nghĩa:
Lời giải:
Đáp án: A
Biểu thức (4x − 2)-3 có nghĩa
Ví dụ 2. Tìm x để biểu thức có nghĩa:
A . -3 < x < 1 B. x > − 3 C. x < − 3 hoặc x > 1 D. x > 1
Lời giải:
Đáp án: C
Biểu thức có nghĩa khi và chỉ khi cơ số x2 + 2x – 3 > 0
x < − 3 hoặc x > 1
Ví dụ 3. Tìm để biểu thức có nghĩa:
A. Luôn có nghĩa. B. Không tồn tại x C. x > 0 D. x > − 1
Lời giải:
Đáp án: A
Biểu thức có nghĩa khi và chỉ khi cơ số x2 + x + 1 > 0
Do đó, biểu thức đã cho luôn có nghĩa với mọi giá trị của x.
Ví dụ 4. Biểu thức f(x) = (x3 − 3x + 2)-3 − 2√x xác định với
Lời giải:
Đáp án: C
f(x) = (x3 − 3x + 2)-3 − 2√x xác định
Ví dụ 5. Biểu thức xác định khi:
Lời giải:
Đáp án: C
xác định khi và chỉ khi:
Dạng 2. Rút gọn các biểu thức chứa lũy thừa, căn thức.
1. Phương pháp giải
Để rút gọn các biểu thức đại số, ta cần linh hoạt sử dụng: các hằng đẳng thức đáng nhớ; các tính chất của lũy thừa và tính chất của căn thức.
nhóm công thức 1 |
Nhóm công thức 2 |
1. am . an = am+n |
|
2. an . bn = (ab)n | |
3. (am)n = am . n |
2. Ví dụ minh họa
Ví dụ 1.Đơn giản biểu thức ta được:
Lời giải:
Đáp án: D
Ta có:
Ví dụ 2.Viết biểu thức về dạng lũy thừa 2m ta được m = ?.
Lời giải:
Đáp án: A
Ta có:
Do đó,
Ví dụ 3.Cho hai số thực dương a và b. Biểu thức được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Lời giải:
Đáp án: D
Ta có:
Ví dụ 4.Cho các số thực dương a và b. Rút gọn biểu thức được kết quả là:
Lời giải:
Đáp án: A
Ví dụ 5.Cho các số thực dương a và b. Rút gọn biểu thức được kết quả là:
A. -1 B. 1 C. 2 D. – 2
Lời giải:
Đáp án: B
Ví dụ 6.Cho x > 0 và y > 0.Rút gọn biểu thức
Lời giải:
Đáp án: C
Dạng 3. So sánh các lũy thừa
1. Phương pháp giải
Để so sánh hai lũy thừa ta sử dụng tính chất sau:
+ Tính chất 1
+ Tính chất 2. So sánh lũy thừa khác cơ số:
Với a > b > 0 thì
+ Chú ý:
2. Ví dụ minh họa
Ví dụ 1.So sánh hai số m và n nếu (√13)m > (√13)n
A. m > n B. m = n
C. m < n D. Không so sánh được.
Lời giải:
Đáp án: A
Do √13 > 1 nên (√13)m > (√13)n <=> m > n .
Ví dụ 2.So sánh hai số m và n nếu
A. Không so sánh được. B. m = n
C. m > n D. m < n
Lời giải:
Đáp án: C
Do
nên 142m > 142n
Mà 14 > 1 nên 2m > 2n <=> m > n.
Ví dụ 3.Nếu (√3 − √2)2m − 2 < √3 + √2 thì
Lời giải:
Đáp án: C
Ta có
Mà 0 < √3 −2 < 1 nên 2m − 2 > −1 <=>
Ví dụ 4.Kết luận nào đúng về số thực a nếu
A. a > 2 B. a > 0 C. a > 1 D.1 < a < 2.
Lời giải:
Đáp án: A
Do
nên
Mà và số mũ không nguyên nên từ (* ) suy ra:
a − 1 > 1 hay a > 2 .
Ví dụ 5.Kết luận nào đúng về số thực a nếu (3a+ 9)− 3 > (3a+ 9)−2
Lời giải:
Đáp án: D
Ta có: (3a+ 9)− 3 > (3a+ 9)−2
<=>
<=> (3a+ 9)3 < (3a+ 9)2 (*)
Do 3 > 2 và số mũ nguyên âm nên (*) xảy ra khi:
Dạng 4. Tính giá trị biểu thức lũy thừa
Ví dụ minh họa
Ví dụ 1. Cho 3x = 4 . Tính giá trị của biểu thức
Lời giải:
Đáp án: C
Ta có:
Ví dụ 2. Biết rằng 2x = 5 . Tính giá trị của biểu thức
Lời giải:
Đáp án: D
Ta có:
Ví dụ 3. Cho 2x = a; 3x = b. Hãy biểu diễn A = 24x + 6x + 9x theo a và b.
A. A = a3b + ab+ b2 B. A = a2.b2 + ab + b2 C. A = ab3 + ab + a2 D. A = a3 + ab + b2
Lời giải:
Đáp án: A
Ta có: A = 24x + 6x + 9x
A = (23 . 3)x + (2 . 3)x + (32)x
= 23x . 3x + 2x . 3x
= a3b + ab + b2
Ví dụ 4. Cho (√2 + 1)x = 3. Hãy tính giá trị của biểu thức A = (√2 − 1)2x + (3 + 2√2)x
Lời giải:
Đáp án: D
Ta có: (√2 + 1)(√2 − 1) = 1; (3 + 2√2) = (√2 + 1)2
Do đó
Ví dụ 5. Cho a = 2x; b = 5x. Hãy biểu diễn T = 20x + 50x theo a và b
Lời giải:
Đáp án: A
Ta có: T = (22 . 5)x + (52 . 2)x
= 22x . 5x + 52x . 2x
= a2b + ab2
= ab(a + b)