X

Các dạng bài tập Toán lớp 12

Cho a, b >0 thỏa mãn a + b ≤ 1. Tìm GTNN của p=a^2 b^2 1/a^2 1/b^2


Câu hỏi:

Cho a, b >0 thỏa mãn a + b ≤ 1. Tìm GTNN của P=a2+b2+1a2+1b2

Trả lời:

P=a2+116a2+b2+116b2+15161a2+1b2

Áp dụng bất đẳng thức Cosi ta có: a2+116a212;b2+116b212;1a2+1b22ab=42ab

Mặt khác: 1a2+1b24a2+b2

Suy ra: 21a2+1b241a2+b2+12ab4.4a2+b2+2ab=16a+b2=16

Suy ra: 1a2+1b28

Vậy P12+12+1516.8=172

Dấu “=” xảy ra khi: a=ba+b=1a=b=12

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:

a) AP=BN

b) Tứ giác OKME là hình chữ nhật.

c) P, O, N thẳng hàng và KE // PN.

Xem lời giải »


Câu 2:

Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức S=1R3+1R4+...+1R2022+1R2023

Xem lời giải »


Câu 3:

Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).

Xem lời giải »


Câu 4:

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho MN=2MAMB+MC. Chứng minh MN luôn đi qua một điểm cố định.

Xem lời giải »


Câu 5:

Cho ab+c+ba+c+ca+b=1 . Chứng minh rằng a2b+c+b2a+c+c2a+b=0

Xem lời giải »


Câu 6:

Giả sử a, b là 2 số thực phân biệt thỏa mãn: a2 + 3a = b2 + 3b = 2. Chứng minh rằng a3 + b3 = -45.

Xem lời giải »


Câu 7:

Cho hai tập hợp A = (-1;2] và B = {x R| mx ≥ 1} (với m là tham số thực). Xác định tất cả giá trị của tham số m để A ∩ B = .

Xem lời giải »


Câu 8:

Cho A = 3 + 32 + 33 + … + 399 + 3100. Hỏi 2A + 3 có phải là số chính phương không?

Xem lời giải »