Cho đoạn thẳng AB và hai tia Ax, By vuông góc với AB ở trên cùng một nửa mặt phẳng bờ AB. Gọi O là trung điểm của AB.
Câu hỏi:
Cho đoạn thẳng AB và hai tia Ax, By vuông góc với AB ở trên cùng một nửa mặt phẳng bờ AB. Gọi O là trung điểm của AB. Xét góc vuông quay quanh O sao cho Om cắt Ax tại C, On cắt By tại D. Chứng minh rằng:
a) CD luôn tiếp xúc với nửa đường tròn
b)
Trả lời:
Xét góc vuông quay quanh O sao cho Om cắt Ax tại C, On cắt By tại D nên
a) Kẻ OH ⊥ CD
Ta có DC = DE (chứng minh câu a)
Suy ra tam giác DCE cân ở D
Mà DO là đường cao nên DO đồng thời là phân giác của
Suy ra
Xét ∆HOD và ∆BOD có
OD là cạnh chung
Suy ra ∆HOD = ∆BOD (cạnh huyền – góc nhọn)
Do đó OH = OB, HD = BD (các cặp cạnh tương ứng)
Mà OB là bán kính của (O)
Suy ra H thuộc (O)
Lại có OH ⊥ CD nên CD là tiếp tuyến của (O)
c) Xét ∆HOC và ∆AOC có
OH = OA (= OB)
OC là cạnh chung
Suy ra ∆HOC = ∆AOC (cạnh huyền – cạnh góc vuông)
Do đó HC = AC
Xét tam giác COD vuông tại O có OH ⊥ CD
Theo hệ thức lượng trong tam giác có
OH2 = CH . DH
Ta có:
Vậy