X

Các dạng bài tập Toán lớp 12

Cho hình bình hành ABCD có góc a = 120 do . Tia phân giác của góc D qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:


Câu hỏi:

Cho hình bình hành ABCD có A^=120°. Tia phân giác của D^ qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Trả lời:

Cho hình bình hành ABCD có góc a = 120 do . Tia phân giác của góc D qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng: (ảnh 1)

a) Hình bình hành ABCD có BAD^,ADC^ ở vị trí trong cùng phía.

Suy ra ADC^=180°BAD^=60°

Khi đó ADI^=IDC^=ADC^2=30° (do DI là tia phân giác của ADC^).

AID^=IDC^ (cặp góc so le trong).

Vì vậy AID^=ADI^

Suy ra tam giác ADI cân tại A.

Do đó AD = AI.

Mà AB = 2AI (I là trung điểm của AB).

Vậy AB = 2AD (điều phải chứng minh).

b) Gọi J là trung điểm của DI.

Tam giác ADI có AJ là đường trung tuyến.

Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.

Khi đó JAI^=DAJ^=DAI^2=60°

Xét ∆AJD và ∆DHA, có:

AJD^=DHA^=90°

AD là cạnh chung;

DAJ^=ADH^=60°

Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).

Suy ra DJ = AH (cặp cạnh tương ứng).

Mà DI = 2DJ (J là trung điểm của DI).

Vậy DI = 2AH (điều phải chứng minh).

c) Ta có BI = BC=12AB

Suy ra tam giác IBC cân tại B.

Mà IBC^=ADC^=60°

Do đó tam giác IBC đều.

Vì vậy IC = IB = IA.

Khi đó tam giác ABC vuông tại C hay ACB^=90°

Suy ra DAC^=ACB^=90°

Vậy AD  AC (điều phải chứng minh).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A = (m; m + 3) và B (2; 6m + 1). Tìm m để A ∩ B = ∅.

Xem lời giải »


Câu 2:

Cho hai tập hợp khác rỗng A = [m – 1; 5) và B = [-3; 2m + 1]. Tìm m để A B.

Xem lời giải »


Câu 3:

Cho tam giác ABC cân tại A, đường cao AD, K là trung điểm của AD. Gọi I là hình chiếu của điểm D trên CK. Chứng minh rằng AIB^=90°.

Xem lời giải »


Câu 4:

Cho tam giác ABC có 3 góc nhọn. Chứng minh sinA + cosA + sinC + cosC > 2.

Xem lời giải »


Câu 5:

Cho B = 1 + 5 + 52 + … + 5100. Hỏi 4B + 1 có phải số chính phương không?

Xem lời giải »


Câu 6:

Cho 3 số dương x, y, z có tích bằng 144. Tìm GTNN của biểu thức P=x+14yy+19zx+136z

Xem lời giải »


Câu 7:

Cho 7 số tự nhiên khác nhau có tổng bằng 100. Chứng minh rằng trong 7 số luôn có 3 số mà tổng của chúng lớn hơn hoặc bằng 50.

Xem lời giải »


Câu 8:

Cho biết cosα=23. Tính giá trị của P=cotα+3tanα2cotα+tanα.

Xem lời giải »