Cho hình bình hành ABCD với AD = 2AB. Từ C vẽ CE vuông góc với AB. Nối E với trung điểm M của AD. Từ M vẽ MF vuông góc với CE, MF cắt BC tại N.
Câu hỏi:
Cho hình bình hành ABCD với AD = 2AB. Từ C vẽ CE vuông góc với AB. Nối E với trung điểm M của AD. Từ M vẽ MF vuông góc với CE, MF cắt BC tại N.
a) Tứ giác MNCD là hình gì?
b) Tam giác EMC là tam giác gì?
c) Chứng minh: .
Trả lời:
a) Ta có MN ⊥ CE (gt); AB ⊥ CE (gt)
Suy ra: MN // AB
Mà AB // CD (ABCD là hình bình hành) nên MN // CD
Tứ giác MNCD có MN // CD
Và MD // CN (AD // BC)
Do đó tứ giác MNCD là hình bình hành.
b) Gọi F là giao điểm của MN và EC
Hình thang AECD (EC // CD) có MF // AE // CD
Và M là trung điểm của AD (gt)
* F là trung điểm của EC.
ΔMEC có MF là đường trung tuyến (F là trung điểm của EC)
Và MF là đường cao
Suy ra: ΔMEC cân tại M.
c) Ta có AD = 2AB (gt)
AD = 2MD (M là trung điểm của AD)
Và AB = CD (ABCD là hình bình hành); MD = CD
Hình bình hành MNCD có MD = CD nên là hình thoi.
CM là đường phân giác nên:
Mà (hai góc so le trong và AE // MF)
Và (hai góc so le trong và MF // CD)
Nên:
Ta có: (CM là phân giác )
Và (ABCD là hình bình hành)
Vậy .