Cho (O; R) đường kính AB và M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A và B của (O; R) theo thứ tự ở C và D.
Câu hỏi:
Cho (O; R) đường kính AB và M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A và B của (O; R) theo thứ tự ở C và D.
a) Chứng minh ACDB là hình thang vuông
b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh OD vuông góc MB và DE.DA = DN.DO
c) Cho AM = R. Tính theo R diện tích ACDB.
Trả lời:
a) AC ⊥ AB vì AC là tiếp tuyến
BD ⊥ AB vì BD là tiếp tuyến
Suy ra: AC // DB ⇒ ACDB là hình thang
Lại có: nên ACDB là hình thang vuông
b) Theo tính chất 2 tiếp tuyến cắt nhau
Ta có: MD = MB
OM = OB = R
Nên OD là đường trung trực của MB
⇒ OD ⊥ MB và MN = NB
Xét tam giác OBD vuông tại B có OD ⊥ BN
Áp dụng hệ thức lượng trong tam giác vuông: DN.DO = BD2 (1)
Tam giác AEB có OE = OA = OB = R nên tam giác AEB vuông tại E
Suy ra: BE ⊥ DA
Lại có: tam giác ABD vuông tại B và OD ⊥ BE
⇒ DE.DA = BD2 (2)
Từ (1) và (2) suy ra: DE.DA = DN.DO
c) Ta có: MA = OA = OM = R nên tam giác AMO đều
⇒ (vì OC là phân giác)
⇒
Xét trong tam giác BOD có:
Trong tam giác OCA có:
Vì ACDB là hình thang vuông AB là đường cao
Nên