Cho phương trình x2 – 5mx – 4m = 0 với m là tham số. Chứng minh rằng khi phương trình có 2 nghiệm phân biệt x1, x2 thì x12 + 5mx2 + m2 + 14m + 1 > 0.
Câu hỏi:
Cho phương trình x2 – 5mx – 4m = 0 với m là tham số. Chứng minh rằng khi phương trình có 2 nghiệm phân biệt x1, x2 thì x12 + 5mx2 + m2 + 14m + 1 > 0.
Trả lời:
Xét x2 – 5mx – 4m = 0
Ta có: ∆ = 25m2 + 16m
Để phương trình có 2 nghiệm phân biệt thì ∆ > 0
Suy ra: 25m2 + 16m > 0 hay
Theo hệ thức Vi-ét ta có:
Xét x12 + 5mx2 + m2 + 14m + 1
= x12 + (x1 + x2)x2 + m2 + 14m + 1
= x12 + x22 + x1x2 + m2 + 14m + 1
= (x1 + x2)2 - x1x2 + m2 + 14m + 1
= 25m2 + 4m + m2 + 14m + 1
= 26m2 + 18m + 1
= (m + 1)2 + 25m2 + 16m
Mà 25m2 + 16m > 0 và (m + 1)2 > 0 theo điều kiện của m
Vậy (m + 1)2 + 25m2 + 16m > 0 tức là x12 + 5mx2 + m2 + 14m + 1 > 0.