Cho số phức z =( 2+ 6i / 3 - i) ^m, m nguyên
Câu hỏi:
Cho số phức với m nguyên. Có bao nhiêu giá trị của m với 1≤ m≤ 50 để z là số thuần ảo?
A. 26.
B. 25.
C. 24.
D. 50.
Trả lời:
Chọn B.
+ Ta có
Do đó:
+ để z là số thuần ảo khi và chỉ khi m = 2k + 1
+ Mà 0 ≤ m ≤ 50 nên 0 ≤ 2k + 1 ≤ 50
Suy ra: -1/2 ≤ k ≤ 24,5
Kết hợp với điều kiện k nguyên nên k ∈ {0;1;2;3...24}
Với 25 giá trị của k cho ta tương ứng 25 giá trị m thỏa yêu cầu đề bài.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho các số phức z thỏa mãn |z – 2 – 4i| = 2. Gọi z1; z2 số phức có module lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức bằng?
Xem lời giải »
Câu 2:
Gọi z1, z2 lần lượt là hai nghiệm của phương trình z2 - (1 + 3i) z – 2 + 2i = 0 và thỏa mãn | z1| > | z2|. Tìm giá trị của biểu thức
Xem lời giải »
Câu 3:
Gọi z1; z2 lần lượt là hai nghiệm của phương trình z2 – 4z + 7 = 0 .Tính giá trị của biểu thức
Xem lời giải »
Câu 4:
Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?
Xem lời giải »
Câu 5:
Cho biểu thức L = 1- z+ z2- z3+ ...+ z2016- z2017 với . Biểu thức L có giá trị là
Xem lời giải »
Câu 6:
Cho 2 số phức ; với z = x+ yi.
Mệnh đề nào sau đây đúng?
Xem lời giải »
Câu 7:
Cho ; . Tính
Xem lời giải »