Cho số phức z thỏa mãn ( 1 - 3i) z là số thực và
Câu hỏi:
Cho số phức z thỏa mãn ( 1 - 3i) z là số thực và . Hỏi có bao nhiêu số phức z thỏa mãn
A. 1
B. 2
C. 3
D. 4
Trả lời:
Chọn B.
Gọi số phức cần tìm là z = a + bi.
Ta có ( 1 - 3i) z = ( 1 - 3i) ( a + bi)
= a + 3b - 3ai + bi = a + 3b + ( b - 3a) i
+ Do ( 1 - 3i) z là số thực nên b - 3a = 0 hay b = 3a
+ ta có ⇔|a – 2 + (-b + 5)i| = 1
Hay ( a - 2) 2 + ( 5 - 3a) 2 = 1
(thỏa mãn)
Vậy có hai số phức z thỏa mãn là z = 2 + 6i và
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Trên mặt phẳng tọa độ Oxy, tìm tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện |z – 2| + |z + 2| = 10.
Xem lời giải »
Câu 2:
Cho số phức z thỏa mãn |z + 2| + |z – 2| = 8. Trong mặt phẳng phức tập hợp những điểm M biểu diễn cho số phức z là?
Xem lời giải »
Câu 4:
Tìm nghiệm của phương trình: ( z + 3 - i)2 - 6( z + 3 - i) + 13 = 0
Xem lời giải »
Câu 5:
Tìm số phức z biết |iz + 1 | = và ( 1 + i) z + 1 – 2i là số thuần ảo.
Xem lời giải »
Câu 6:
Biết z1; z2 là hai số phức thỏa điều kiện: . Tính z1+ z2
Xem lời giải »