Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB + cotC).
Câu hỏi:
Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB + cotC).
Trả lời:
Theo định lý cosin: cosA =
Và sinA =
cotA = (*)
Lại có theo công thức tính độ dài đường trung tuyến của tam giác ta có:
BM2 =
CN2 =
Suy ra: a2 = BC2 = BG2 + GC2 = =
⇔ a2 =
⇔ 9a2 = b2 + c2 + 4a2
⇔ 5a2 = b2 + c2 (**)
Thay (**) vào (*): cotA =
Mặt khác cotB + cotC =
⇒ cotB + cotC = (2)
Từ (1) và (2) suy ra: cotA = 2 (cotB+cotC) =
Vậy cotA = 2 (cotB + cotC).