X

Các dạng bài tập Toán lớp 12

Cho tam giác ABC. Vẽ các tam giác đều ABM, ACN phía ngoài


Câu hỏi:

Cho tam giác ABC. Vẽ các tam giác đều ABM, ACN phía ngoài tam giác ABC. Gọi D, E, F lần lượt là trung điểm của BC, AM, AN. Chứng minh tam giác DEF đều.

Trả lời:

Cho tam giác ABC. Vẽ các tam giác đều ABM, ACN phía ngoài (ảnh 1)

Gọi I là trung điểm AB

Ta có: EI là đường trung bình của tam giác AMB

EI // MB

\(\widehat {AEI} = \widehat {AMB} = 60^\circ \)

Lại có: EI = \(\frac{1}{2}MB = AE;ID = \frac{1}{2}AC = AF\)

\(\widehat {EAF} = 360^\circ - 2.60^\circ - \widehat {BAC} = 240^\circ - \widehat {BAC}\)

\(\widehat {EID} = 360^\circ - 120^\circ - \widehat {BID} = 240^\circ - \widehat {BAC}\)(\(\widehat {BID} = \widehat {BAC}\) vì ID // AC)

Xét ∆EID và ∆AEF có:

EI = AE

\[\widehat {EID} = \widehat {EAF}\]

ID = AF

Suy ra: EID =  EAF (c.g.c)

DE = EF (*) và \(\widehat {IED} = \widehat {AEF}\)

\(\widehat {AEI} = \widehat {IED} + \widehat {DAE} = 60^\circ \)

\(\widehat {AEF} + \widehat {DAE} = 60^\circ \) hay \(\widehat {DEF} = 60^\circ \)(**)

Từ (*) và (**) suy ra: DEF là tam giác đều.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.

a) Chứng minh AH vuông góc với BC.

b) Gọi E là trung điểm AH. Chứng minh bốn điểm A, M, H, E cùng nằm trên một đường tròn và EM là tiếp tuyến của đường tròn (O).

Xem lời giải »


Câu 2:

Tính giá trị biểu thức: \(\frac{{2\sqrt {15} - 2\sqrt {10} + \sqrt 6 - 3}}{{2\sqrt 5 - 2\sqrt {10} - \sqrt 3 + \sqrt 6 }}\).

Xem lời giải »


Câu 3:

Cho nửa đường tròn (O). Đường kính AB = 6 cm. Kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CE với nửa đường tròn (E là tiếp điểm), CE cắt By tại D.

a) Chứng minh \[\widehat {COD} = 90^\circ \].

b) Chứng minh AEB và COD đồng dạng.

c) Gọi I là trung điểm của CD. Vẽ đường tròn (I) bán kính IC. Chứng minh rằng AB là tiếp tuyến của (I).

Xem lời giải »


Câu 4:

Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC.

a) Tứ giác ADME là hình gì, tại sao?

b) Chứng minh DE = \(\frac{1}{2}BC\).

c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

Xem lời giải »


Câu 5:

Cho a, b, c là 3 cạnh của 1 tam giác.

Chứng minh rằng A = \(\frac{a}{{b + c - a}} + \frac{b}{{a + c - b}} + \frac{c}{{a + b - c}} \ge 3\).

Xem lời giải »


Câu 6:

Tìm các số nguyên dương x, y, z thỏa mãn x + y + z = xyz.

Xem lời giải »


Câu 7:

Tìm m để phương trình x2 + mx + m – 1 = 0 có hai nghiệm lớn hơn m.

Xem lời giải »


Câu 8:

Quan sát hình vẽ sau. Giải thích vì sao m song song với n?

Quan sát hình vẽ sau. Giải thích vì sao m song song với n (ảnh 1)

Xem lời giải »