X

Các dạng bài tập Toán lớp 12

Giải bất phương trình logarit bằng cách đưa về cùng cơ số cực hay - Toán lớp 12


Giải bất phương trình logarit bằng cách đưa về cùng cơ số cực hay

Với Giải bất phương trình logarit bằng cách đưa về cùng cơ số cực hay Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Giải bất phương trình logarit bằng cách đưa về cùng cơ số từ đó đạt điểm cao trong bài thi môn Toán lớp 12.

Giải bất phương trình logarit bằng cách đưa về cùng cơ số cực hay

A. Phương pháp giải & Ví dụ

logaf(x) ≤ logag(x)
0 < a < 1 logaf(x) ≤ logag(x) ⇔ f(x) ≥ g(x) > 0
a > 1 logaf(x) ≤ logag(x) ⇔ 0 < f(x) ≤ g(x)
logaf(x) ≥ logag(x)
0 < a < 1 logaf(x) ≥ logag(x) ⇔ 0 < f(x) ≤ g(x)
a > 1 logaf(x) ≥ logag(x) ⇔ f(x) ≥ g(x) > 0

Ví dụ minh họa

Bài 1: Giải bất phương trình sau

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Bất phương trình tương đương

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy tập nghiệm của bất phương trình là [2;+∞).

Bài 2: Giải bất phương trình sau

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Giải bất phương trình sau

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

B. Bài tập vận dụng

Bài 1: Giải bất phương trình log2(x2-x-2) ≥ log0,5(x-1)+1

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Tìm nghiệm nguyên nhỏ nhất của bất phương trình log2(logx) ≥ loglog2x

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Tìm nghiệm nguyên nhỏ nhất của bất phương trình

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 4: Giải bất phương trình

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lời giải:

Điều kiện: x > 0.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 5: Giải bất phương trình log(x+1)+logx > log20

Lời giải:

Điều kiện: x > 0.

Ta có: log(x+1)+logx > log20 ⇔ log[(x+1)x] > log20 ⇔ x2+x > 20 ⇔ x2+x-20 > 0

⇔ x < -5 ∨ x > 4.

Giao với điều kiện ta được: x > 4.

Bài 6: Giải bất phương trình log2(x+1)-2log2(5-x) < 1-log2(x-2)

Lời giải:

Điều kiện: 2< x < 5.

Ta có:

log2(x+1)-2log2(5-x) < 1-log2(x-2) ⇔ log2(x+1)+log2(x-2) < log22+log2(5-x)2

⇔ log2[(x+1)(x-2)] < log2[2(5-x)2 ] ⇔ (x+1)(x-2) < 2(5-x)2 ⇔ x2-19x+52 > 0

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 7: Giải bất phương trình

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lời giải:

Điều kiện: x > 1.

Ta có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Giao với điều kiện ta được: 1< x ≤ 2.

Bài 8: Giải bất phương trình

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lời giải:

Điều kiện: x > 0.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Kết hợp điều kiện ta được 0< x ≤ 25.

Bài 9: Giải bất phương trình

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lời giải:

Điều kiện: x > 2.

⇔ log2(x+1)+log2(x-2) ≤ log24

⇔ log2[(x+1)(x-2)] ≤ log24 ⇔ (x+1)(x-2) ≤ 4 ⇔ x2-x-6 ≤ ⇔ -2 ≤ x ≤ 3.

Giao với điều kiện ta được 2< x ≤ 3.

Bài 10: Giải bất phương trình

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 11: Giải bất phương trình

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lời giải:

Điều kiện: x > 3.

Ta có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Giao với điều kiện ta được: 3< x < 4.

Bài 12: Tìm giá trị của tham số m để bất phương trình log2(3x2-2mx-m2-2m+4) > 1+log2(x2+2) nghiệm đúng với mọi x∈R.

Lời giải:

Ta có:

log2(3x2-2mx-m2-2m+4) > 1+log2(x2+2) ⇔ log2(3x2-2mx-m2-2m+4) > log2(2x2+4)

Yêu cầu bài toán

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xem thêm các dạng bài tập Toán lớp 12 chọn lọc, có lời giải hay khác: