Gọi M là điểm biểu diễn của số phức z thỏa mãn 3| z + i| = | 2z ngang - z + 3i |
Câu hỏi:
Gọi M là điểm biểu diễn của số phức z thỏa mãn 3| z + i| = | 2 - z + 3i | . Tập hợp tất cả những điểm M như vậy là
A. một parabol.
B. một đường thẳng.
C. một đường tròn.
D. một elip.
Trả lời:
Chọn A.
Gọi số phức z = x + yi có điểm biểu diễn là M(x; y) trên mặt phẳng tọa độ:
Theo đề bài ta có:
⇔ |3(x + yi) + 3i| = |2(x – yi) – (x + yi) + 3i|
⇔ |3x + (3y + 3)i| = |x + (3 – 3y)i|
Hay 9x2 + ( 3y + 3) 2 = x2 + ( 3 - 3y) 2
Suy ra: 8x2 + 36y = 0 hay y = -2/9 x2
Vậy tập hợp các điểm M(x; y) biểu diễn số phức z theo yêu cầu của đề bài là parabol
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Trên mặt phẳng tọa độ Oxy, tìm tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện |z – 2| + |z + 2| = 10.
Xem lời giải »
Câu 2:
Cho số phức z thỏa mãn |z + 2| + |z – 2| = 8. Trong mặt phẳng phức tập hợp những điểm M biểu diễn cho số phức z là?
Xem lời giải »
Câu 4:
Tìm nghiệm của phương trình: ( z + 3 - i)2 - 6( z + 3 - i) + 13 = 0
Xem lời giải »
Câu 5:
Xác định tập hợp các điểm M trong mặt phẳng phức biểu diễn các số phức z thỏa mãn điều kiện
Xem lời giải »
Câu 6:
Có bao nhiêu số phức z thỏa mãn và z2 là số thuần ảo.
Xem lời giải »
Câu 7:
Tính tổng phần ảo các số phức z thỏa mãn |z| = 5 và phần thực của nó bằng 2 lần phần ảo.
Xem lời giải »
Câu 8:
Cho số phức z thỏa mãn ( 1 - 3i) z là số thực và . Hỏi có bao nhiêu số phức z thỏa mãn
Xem lời giải »