Cách giải phương trình logarit chứa tham số cực hay - Toán lớp 12
Cách giải phương trình logarit chứa tham số cực hay
Với Cách giải phương trình logarit chứa tham số cực hay Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập giải phương trình logarit chứa tham số từ đó đạt điểm cao trong bài thi môn Toán lớp 12.
A. Phương pháp giải & Ví dụ
♦ Dạng toán Tìm m để phương trình có số nghiệm cho trước:
• Bước 1. Tách m ra khỏi biến số x và đưa về dạng f(x)=A(m).
• Bước 2. Khảo sát sự biến thiên của hàm số f(x) trên D.
• Bước 3. Dựa vào bảng biến thiên để xác định giá trị tham số A(m) để đường thẳng y=A(m) nằm ngang cắt đồ thị hàm số y=f(x).
• Bước 4. Kết luận các giá trị của A(m) để phương trình f(x)=A(m) có nghiệm (hoặc có k nghiệm) trên D.
♦ Lưu ý
• Nếu hàm số y=f(x) có giá trị lớn nhất và giá trị nhỏ nhất trên D thì giá trị A(m) cần tìm là những m thỏa mãn:
• Nếu bài toán yêu cầu tìm tham số để phương trình có k nghiệm phân biệt, ta chỉ cần dựa vào bảng biến thiên để xác định sao cho đường thẳng y=A(m) nằm ngang cắt đồ thị hàm số y=f(x) tại k điểm phân biệt.
Hoặc sử dụng điều kiện có nghiệm của phương trình bậc hai với lưu ý sau.
♦ Nhắc lại: Phương trình bậc hai có hai nghiệm thỏa mãn
Hoặc sử dụng định lí đảo về dấu tam thức bậc hai:
Ví dụ minh họa
Bài 1: Tìm tham số thực m để phương trình: log23 x+log3x+m=0 có nghiệm.
Hướng dẫn:
Tập xác định D=(0;+∞).
Đặt log3x=t. Khi đó phương trình trở thành t2+t+m=0 (*)
Phương trình đã cho có nghiệm khi phương trình (*) có nghiệm: Δ=1-4m ≥ 0 ⇔ m ≤ 1/4.
Vậy để phương trình có nghiệm thực thì: m ≤ 1/4.
Bài 2: Tìm tham số m để phương trình log2(5x-1)log4(2.5x-2)=m có nghiệm thực x ≥ 1.
Hướng dẫn:
Điều kiện: 5x-1 > 0 ⇔ x > 0
log2(5x-1)log4(2.5x-2)=m
⇔ log2(5x-1) 1/2 log2(2(5x-1))=m
⇔ log2(5x-1)(1+log2(5x-1))=2m
⇔ log22 (5x-1)+log2(5x-1)=2m
Đặt log2(5x-1)=t. Khi đó phương trình đã cho trở thành t2+t-2m=0 (*)
Phương trình đã cho có nghiệm x ≥ 1 khi phương trình (*)có nghiệm
Vậy phương trình có nghiệm thực x ≥ 1 thì m ≥ 3.
Bài 3: Tìm tham số thực m để phương trình có nghiệm thực duy nhất.
Hướng dẫn:
⇔ log(mx)=2log(x+1)
⇔ log(mx)=log(x+1)2
⇔ mx=(x+1)2 ⇔ x2+(2-m)x+1=0 (*)
Phương trình đã cho có nghiệm duy nhất khi phương trình (*)có một nghiệm thỏa mãn
TH1: phương trình (*) có hai nghiệm thỏa mãn -1 < x1 ≤ x2:
TH2: phương trình (*) có hai nghiệm thỏa mãn x1 < -1 < x2: af(-1) < 0 ⇔ m < 0.
Các giá trị m cần tìm
B. Bài tập vận dụng
Bài 1: Tìm tham số thực m để phương trình sau có hai nghiệm thực phân biệt trong khoảng (4;6).
Lời giải:
Khi đó phương trình đã cho trở thành: mt2-2(m2+1)t+m3+m+2 = 0 (*).
Yêu cầu bài toán tương đương với (*) phải có hai nghiệm phân biệt
Vậy 0 < m ≠ 1 thỏa yêu cầu bài toán.
Bài 2: Tìm m để phương trình sau có ít nhất một nghiệm trong đoạn[1;3√3 ] .
Lời giải:
Điều kiện: x > 0.
Khi đó phương trình đã cho trở thành: t2+t-2m-2 = 0 ⇔ t2+t=2m+2 (*).
Yêu cầu bài toán tương đương với (*) phải có ít nhất một nghiệm thuộc đoạn [1;2].
Xét hàm số f(t)=t2+t trên đoạn[1;2] . Ta có f'(t) = 2t+1 > 0, ∀t ∈ [1;2]
Để (*) có ít nhất một nghiệm thuộc đoạn [1;2] thì 2 < 2m+2 < 6 ⇔ 0 < m < 2
Bài 3: Tìm tham số m để (m-4)log22 x-2(m-2)log2 x+m-1=0 có hai nghiệm thỏa 1 < x1 < 2 < x2
Lời giải:
Đặt log2 x=t, phương trình đã cho trở thành:
Yêu cầu bài toán tương đương với (*) phải có hai nghiệm thỏa mãn 0 < t1 < 1 < t2.
Từ BBT ⇒ m > 4.
Bài 4: Tìm tham số m để phương trình sau có nghiệm thực thuộc [32;+∞].
Lời giải:
Đặt log2 x=t, phương trình đã cho trở thành:
Yêu cầu bài toán tương đương với (*) phải có hai nghiệm phân biệt t ≥ 5:
Bảng biến thiên
Căn cứ BBT suy ra giá trị cần tìm là m ∈ (1;√17/2].
Bài 5: Tìm tất cả các giá trị thực của tham số m để phương trình log2 (mx-x2 )=2 vô nghiệm?
Lời giải:
log2 mx-x2 = 2 ⇔ -x2+mx-4 = 0 (*)
Phương trình (*) vô nghiệm ⇔ Δ < 0 ⇔ m2-16 < 0 ⇔ -4 < m < 4
Bài 6: Tìm tất cả các giá trị thực của tham số m để phương trình log42 x+3log4 x+2m-1=0 có 2 nghiệm phân biệt?
Lời giải:
Phương trình có 2 nghiệm phân biệt ⇔ Δ > 0 ⇔ 13-8m > 0 ⇔ m < 13/8