X

Các dạng bài tập Toán lớp 12

Số nhà của Alice là một số có 4 chữ số chia hết cho 5. Khi cô ấy di chuyển chữ số đầu tiên đến vị trí hàng đơn vị thì nhận thấy rằng số mới có 4 chữ số


Câu hỏi:

Số nhà của Alice là một số có 4 chữ số chia hết cho 5. Khi cô ấy di chuyển chữ số đầu tiên đến vị trí hàng đơn vị thì nhận thấy rằng số mới có 4 chữ số lớn hơn số nhà của cô ấy là 4707. Hỏi số nhà của Alice là bao nhiêu?

Trả lời:

Gọi số nhà của Alice là abcd¯

abcd¯ chia hết cho 5 nên d = 0 hoặc d = 5.

* Nếu d = 0 thì số nhà Alice có dạng abc0¯

Ta có: bc0a¯abc0¯=4707

Ta thấy: a – 0 = 7 (hàng đơn vị) nên a = 7.

Suy ra có: bc07¯7bc0¯=4707

⇔ bc07¯=7bc0¯+4707

Giả sử số nhỏ nhất của 7bc0¯ là 7000 thì 7000 + 4707 = 11707 là số có 5 chữ số. Nên loại.

* Nếu d = 5 thì số nhà Alice có dạng abc5¯

Ta có: bc5a¯abc5¯=4707

Xét hàng đơn vị: a – 5 = 7, vì a có 1 chữ số nên a = 2

Xét hàng chục: 5 – c = 0 (nhớ thêm 1 từ hàng đơn vị) nên c = 4

Khi đó: b452¯2b45¯=4707 (*)

Xét chữ số b có: 4 – b = 7 (nên b = 7)

Thay vào (*): 7452 – 2745 = 4707 (đúng, thỏa mãn)

Vậy số nhà Alice là 2745.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho ∆ABC vuông tại A, đường cao AH. Biết 3AB = 2AC. Tính sinACB^, tanACB^

Xem lời giải »


Câu 2:

Cho tam giác ABC ( AB > BC) có AB + BC = 11cm, B^=60°. Bán kính đường tròn nội tiếp tam giác ABC là r=23 cm. Tính đường cao AH của tam giác ABC.

Xem lời giải »


Câu 3:

Cho C = 5 + 52 + … + 520. Chứng minh rằng C chia hết cho 5, 6, 13.

Xem lời giải »


Câu 4:

Cho x + y = 12 và xy = 32. Tính x4 + y4.

Xem lời giải »


Câu 5:

Giải phương trình: (2sinx – 1)(2sin2x + 1) = 3 – 4cos2x.

Xem lời giải »


Câu 6:

Một lớp học có 28 nam và 24 nữ. Có bao nhiêu cách chia đều số học sinh vào các tổ với số tổ nhiều hơn sao cho số nam trong các tổ bằng nhau và số nữ trong các tổ bằng nhau? Cách chia nào để mỗi tổ có ít học sinh nhất?

Xem lời giải »


Câu 7:

Cho đoạn thẳng AB và hai tia Ax, By vuông góc với AB ở trên cùng một nửa mặt phẳng bờ AB. Gọi O là trung điểm của AB. Xét góc vuông mOn^ quay quanh O sao cho Om cắt Ax tại C, On cắt By tại D. Chứng minh rằng:

a) CD luôn tiếp xúc với nửa đường tròn O;AB2

b) AC.BD=AB24

Xem lời giải »


Câu 8:

Cho các số dương a, b, c thỏa mãn abc = 1.

Chứng minh a31+b1+c+b31+c1+a+c31+a1+c34

Xem lời giải »