X

Các dạng bài tập Toán lớp 12

Tìm m để hàm bậc ba có 2 điểm cực trị cực hay, có lời giải - Toán lớp 12


Tìm m để hàm bậc ba có 2 điểm cực trị cực hay, có lời giải

Với Tìm m để hàm bậc ba có 2 điểm cực trị cực hay, có lời giải Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tìm m để hàm bậc ba có 2 điểm cực trị từ đó đạt điểm cao trong bài thi môn Toán lớp 12.

Tìm m để hàm bậc ba có 2 điểm cực trị cực hay, có lời giải

A. Phương pháp giải

Xét hàm số y = ax3 + bx2 + cx + d, (a ≠ 0)

Khi đó y' = 3ax2 + 2bx + c; y' = 0 ⇔ 3ax2 + 2bx + c = 0

Hàm số có 2 điểm cực trị ⇔ phương trình y' = 0 có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ b2 - 3ac > 0

B. Ví dụ minh họa

Ví dụ 1: Số giá trị nguyên của tham số m ∈ [-10;10] để hàm số Tìm m để hàm bậc ba có 2 điểm cực trị cực hay, có lời giải có cực đại, cực tiểu là:

A. 20

B. 21

C. 10

D. 9

Lời giải

Chọn A

Ta có y' = x2 + 2mx - (1 - 2m); y' = 0 ⇔ x2 + 2mx - (1 - 2m) = 0

Hàm số đã cho có cực đại và cực tiểu ⇔ phương trình y' = 0 có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ m2 + (1 - 2m) > 0 ⇔ (m - 1)2 > 0 ⇔ m ≠ 1

Kết hợp m nguyên và m ∈ [-10;10] thì có 20 giá trị của m thỏa mãn.

Ví dụ 2: Với giá trị nào của m thì hàm số y = x3 - 3x2 + 3(1 - m2)x + 1 có 2 điểm cực trị.

A. m ≠ 1

B. m ∈ R

C. m ≠ 0

D. Không tồn tại m

Lời giải

Chọn C

Ta có y' = 3x2-6x + 3(1 - m2); y' = 0 ⇔ x2-2x + 1 - m2 = 0

Hàm số đã cho có 2 điểm cực trị ⇔ phương trình y' = 0 có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ 1 - (1 - m2)>0 ⇔ m2>0 ⇔ m ≠ 0

Ví dụ 3: Cho hàm số y = -2x3 + (2m - 1)x2 - (m2 - 1)x - 2. Số giá trị nguyên của m để hàm số đã cho có hai điểm cực trị là:

A. 3

B. 5

C. 6

D. 8

Lời giải

Chọn B

Ta có y' = -6x2 + 2(2m - 1)x - (m2 - 1)

Hàm số đã cho có 2 điểm cực trị ⇔ phương trình y' = 0 có hai nghiệm phân biệt

Tìm m để hàm bậc ba có 2 điểm cực trị cực hay, có lời giải

Do m nguyên nên m ∈ {-3;-2;-1;0;1}

Vậy có tất cả 5 giá trị nguyên của m thỏa mãn

Ví dụ 4: Tìm tất cả các giá trị của m để hàm số Tìm m để hàm bậc ba có 2 điểm cực trị cực hay, có lời giải có 2 điểm cực trị.

Lời giải

Có y' = (m + 1)x2 + 2(m + 2)x + m

Hàm số đã cho có 2 điểm cực trị ⇔ phương trình y' = 0 có hai nghiệm phân biệt

Tìm m để hàm bậc ba có 2 điểm cực trị cực hay, có lời giải

Xem thêm các dạng bài tập Toán lớp 12 chọn lọc, có lời giải hay khác: