X

Các dạng bài tập Toán lớp 12

Tổng S=2019C0 + 2019C3 + 2019C6 + ... + 2019C2019 bằng:


Câu hỏi:

Tổng S=C20190+C20193+C20196+...+C20192019 bằng:

A. 22019-23.

B. 22019+43.

C. 22019+23.

D. 22019-43.

Trả lời:

Đáp án cần chọn là: A

Ta tìm các số phức z thỏa mãn z3=1 ta có:

z3=1z3-1=0z-1z2+z+1=0z=1z2+z+1=0z1=1z2=-12+32iz3=-12-32i

Xét kai triển

1+x2019=k=02019C2019kxk=C20190+C20191x+C20192x2+...+C20192019x2019(*)

Thay z2=-12+32i vào khai triển (*) ta được

1-12+32i2019=C20190+C20191z2+C20192.z22+...+C20192019z2201912+32i2019=C20190+C20191z2+C20192z22+C20193+...+C20192019-1=C20190+C20193+C20196+...+C20192019+z2C20191+C20194+...+C20192017              +z22C20192+C20195+...+C20192018 (1)

Tương tự thay z3=-12-32i vào khai triển (*) ta được:

-1-12-32i2019=C20190+C20191z3+C20192.z32+...+C20192019z3201912-32i2019=C20190+C20191z3+C20192z32+C20193+...+C20192019-1=C20190+C20193+C20196+...+C20192019+z3C20191+C20194+...+C20192017              +z32C20192+C20195+...+C20192018 (2)

Thay z=1 vào khai triển (*) ta được:

22019=C20190+C20191+C20192+...+C2019201922019=C20190+C20193+C20196+...+C20192019+C20191+C20194+C20197+...+C20192017               +C20192+C20195+C20198+...+C20192018 (3)

Cộng vế với vế của (1); (2); (3) ta được:

22019-2=3C20190+C20193+...+C20192019+1+z2+z3C20191+C20194+...+C20192018               +1+z22+z32C20192+C20195+...+C20192017

Nhận thấy 1+z2+z3=1-12+32i-12-32i=0 và 1+z22+z32=1+-12+32i2+-12-32i2=0

Nên 22019-2=3SS=22019-23.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Giả sử z1, z2 là hai nghiệm phức của phương trình z2-2z+5=0 và A, B là các điểm biểu diễn của z1,z2. Tọa độ trung điểm của đoạn thẳng AB là:

Xem lời giải »


Câu 2:

Cho số phức z=a+bi với a, b là hai số thực khác 0. Một phương trình bậc hai với hệ số thực nhận z¯ làm nghiệm với mọi a, b là:

Xem lời giải »


Câu 3:

Cho z=2+3i là một số phức. Hãy tìm một phương trình bậc 2 với hệ số thực nhận z và z¯ làm nghiệm.

Xem lời giải »


Câu 4:

Cho số phức w và hai số thực a, b. Biết z1=w+2i và z2=2w-3 là 2 nghiệm phức của phương trình z2+az+b=0. Tính z1+z2.

Xem lời giải »


Câu 5:

Có bao nhiêu giá trị nguyên của hàm số m để phương trình z2-2mz+6m-5=0 có hai nghiệm phức phân biệt z1, z2 thỏa mãn z1=z2?

Xem lời giải »


Câu 6:

Có bao nhiêu số nguyên m để phương trình z2+2mz+3m+4=0 có hai nghiệm không phải là số thực?

Xem lời giải »


Câu 7:

Biết i+1 là nghiệm của phương trình zi+azi+bz+a=0a,bR ẩn z trên tập số phức. Tìm b2-a3.

Xem lời giải »


Câu 8:

Gọi z1; z2 là các nghiệm phức của phương trình z2+4z+5=0. Đặt w=1+z1100+1+z2100, khi dó

Xem lời giải »