X

Các dạng bài tập Toán lớp 12

Trong không gian Oxyz, cho điểm G(1,4,3). Phương trình mặt phẳng cắt các trục tọa độ


Câu hỏi:

Trong không gian Oxyz, cho điểm G(1,4,3). Phương trình mặt phẳng cắt các trục tọa độ Ox,Oy,Oz  lần lượt tại A,B,C  sao cho G là trọng tâm tứ diện OABC  

A. x3+y12+z9=1

B. x4+y16+z12=1 .
C. 3x+12y+9z78=0 .
D. 4x+16y+12z104=0 .

Trả lời:

Giả sử A(a,0,0);B(0,b,0);C(0;0;c) .

G(1;4;3) là trọng tâm tứ diện OABCxG=xA+xB+xC+xD4yG=yA+yB+yC+yD4xG=zA+zB+zC+zD4

0+a+0+0=4.10+0+b+0=4.40+0+0+c=4.3a=4b=16c=12

Ta có phương trình mặt phẳng (ABC)  là: x4+y16+z12=1 .

Chọn B.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian Oxyz một vectơ pháp tuyến của mặt phẳng x2+y1+z3=1  

Xem lời giải »


Câu 2:

Cho ba điểm A(2,1,-1), B(-1,0,4), C(0,-2,1). Phương trình mặt phẳng đi qua A và vuông góc với BC 

Xem lời giải »


Câu 3:

Trong không gian với hệ toạ độ Oxyz cho hai điểm A1;3;2,B3;5;2.  Phương trình mặt phẳng trung trực của đoạn thẳng AB có dạng x+ay+bz+c=0.

Khi đó a+b+c  bằng

Xem lời giải »


Câu 4:

Trong không gian  mặt phẳng song song với mặt phẳng (Oxy) và đi qua điểm A(1;1;1)  có phương trình là

Xem lời giải »


Câu 5:

Trong không gian Oxyz, cho điểm G(1,4,3). Phương trình mặt phẳng cắt các trục tọa độ Ox,Oy,Oz  lần lượt tại A,B,C  sao cho G là trọng tâm tứ diện OABC  

Xem lời giải »


Câu 6:

Trong không gian với hệ tọa độ Oxyz. Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3)  và cắt các trục Ox,Oy,Oz  lần lượt tại ba điểm A,B,C  khác với gốc tọa độ O sao cho biểu thức 1OA2+1OB2+1OC2  có giá trị nhỏ nhất.

Xem lời giải »


Câu 7:

Trong không gian Oxyz, có bao nhiêu mặt phẳng qua điểm M4;4;1  và chắn trên ba trục tọa độ Ox,Oy,Oz  theo ba đoạn thẳng có độ dài theo thứ tự lập thành cấp số nhân có công bội bằng 12?

Xem lời giải »


Câu 8:

Trong không gian với hệ toạ độ Oxyz, cho các điểm A(1,0,0), B(0,1,0). Mặt phẳng x+ay+bz+c=0  đi qua các điểm A,B  đồng thời cắt tia Oz tại C sao cho tứ diện OABC có thể tích bằng 16.  Giá trị của a+3b2c  

Xem lời giải »