X

Các dạng bài tập Toán lớp 12

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;2;3), B (0;4;5)


Câu hỏi:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;2;3), B (0;4;5). Gọi M là điểm sao cho MA=2MB. Khoảng cách từ điểm M đến mặt phẳng (P): 2x - 2y - z + 6 = 0 đạt giá trị nhỏ nhất xấp xỉ là bao nhiêu?

A.1,12 

B.1,17 

C.1,21 

D.1,22

Trả lời:

Chọn D

Gọi M (x;y;z).

Ta có MA = 2MB nên (x - 1)² + (y - 2)² + (z - 3)² = 4 [x² + (y - 4)² + (z - 5)²]

x2+y2+z2+23x-283y-343z+50=0

Suy ra tập hợp các điểm M thỏa mãn MA  = 2MB là mặt cầu (S) có tâm  và bán kính R = 2

 nên (P) không cắt (S).

Do đó, khoảng cách từ điểm M đến mặt phẳng (P): 2x - 2y - z + 6 = 0 đạt giá trị nhỏ nhất là:

dmin=dI;(P) - R = 299-2=119

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu (S) có tâm nằm trên đường thẳng d: x1=y-11=z-21  và tiếp xúc với hai mặt phẳng (P): 2x - z - 4 = 0, (Q): x – 2y – 2 = 0

Xem lời giải »


Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (S): x + 2y – 2z + 2018 = 0 và (Q): x + my + (m -1)z + 2017 = 0. Khi hai mặt phẳng (P) (Q) tạo với nhau một góc nhỏ nhất thì điểm H nào dưới đây nằm trong mặt phẳng (Q)?

Xem lời giải »


Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau 

d1:x=4-2ty=tz=3, d2:x=1y=t'z=-t'

Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng trên là:

Xem lời giải »


Câu 4:

Trong không gian với tọa độ Oxyz, cho hai điểm A (1;1;2), B (-1; 3; -9). Tìm tọa độ điểm M thuộc Oy sao choABM vuông tại M.

Xem lời giải »


Câu 5:

Cho tứ diện ABCD có M, N, P lần lượt thuộc các cạnh AB, BC, CD sao cho MA=MB, NB=2NC, PC=2PD. Mặt phẳng (MNP) chia tứ diện thành hai phần. Gọi T là tỉ số thể tích của phần nhỏ chia phần lớn. Giá trị của T bằng?

Xem lời giải »


Câu 6:

Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC biết điểm A (1; 2; 3), đường trung tuyến BM và đường cao CH có phương trình tương ứng là x=5ty=0z=1+4t  x-416=y+2-13=z-35 . Viết phương trình đường phân giác góc A.

Xem lời giải »


Câu 7:

Trong không gian Oxyz cho điểm M (2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I (1;2;3) đến mặt phẳng (P)

Xem lời giải »


Câu 8:

Trong không gian (Oxy) cho tam giác ABC có A (2;3;3), phương trình đường trung tuyến kẻ từ B là x-3-1=y-32=z-2-1 , phương trình đường phân giác trong góc C là x-22=y-4-1=z-2-1 . Biết rằng u=m;n;-1  là một véc tơ chỉ phương của đường thẳng AB. Tính giá trị biểu thức T=m²+n².

Xem lời giải »