X

Các dạng bài tập Toán lớp 12

Viết phương trình mặt cầu (S) qua gốc O và các giao điểm của mặt phẳng (P): 2x + y - 3z + 6 = 0 với ba trục tọa độ 


Câu hỏi:

Viết phương trình mặt cầu (S) qua gốc O và các giao điểm của mặt phẳng P:   2x+y3z+6=0 với ba trục tọa độ 

A. x2+y2+z23x+6y+2z=0

B. x2+y2+z23x6y2z=0

C. x2+y2+z2+3x+6y+2z=0

D. x2+y2+z2+3x+6y2z=0

Trả lời:

Chọn D

(P) cắt ba trục Ox, Oy, Oz tại A3,0,0;B0,6,0,C0,0,2

S:x2+y2+z22ax2by2cz+d=0  qua O,A,B,C, nên:

d=0;  9+6a=0a=32;  36+12b=0b=3;  44c=0c=1

Vậy S:x2+y2+z2+3x+6y2z=0

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (C)  đường kính AB  và đường thẳng Δ. Để hình tròn xoay sinh bởi (C)  khi quay quanh Δ là một mặt cầu thì cần có thêm điều kiện nào sau đây:

(I) Đường kính AB thuộc Δ.

(II) Δ cố định và đường kính AB thuộc Δ.

(III) Δ cố định và hai điểm A, B cố định trên Δ.

Xem lời giải »


Câu 2:

Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?
Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. (ảnh 1)

Xem lời giải »


Câu 3:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

Xem lời giải »


Câu 4:

Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC=R3. Khi đó khoảng cách từ O đến BC bằng:

Xem lời giải »


Câu 5:

Cho mặt cầu S:  x2+y2+z2+2x2y+6z5=0 và mặt phẳng P:x2y+2z+3=0. Gọi M là tiếp điểm của (S) và tiếp diện di động (Q) vuông góc với (P). tập hợp các điểm M là:

Xem lời giải »


Câu 6:

Cho mặt cầu S:  x2+y2+z2+2x2y+6z5=0 và mặt phẳng P:x2y+2z+3=0. Viết phương trình mặt cầu (S’) có bán kính nhỏ nhất chứa giao tuyến  của (S) và (P).

Xem lời giải »


Câu 7:

Cho tứ diện ABCD có A(1,1,1); B(3,3,1); C(3,1,3); D(1,3,3). Viết phương trình mặt cầu ( S1 ) tiếp xúc với 6 cạnh của tứ diện

Xem lời giải »


Câu 8:

Cho tứ diện ABCD có A(1,1,1); B(3,3,1; C(3,1,3); D(3,1,3). Viết phương trình mặt cầu ( S2 ) nội tiếp tứ diện.

Xem lời giải »